Class: XII Session: 2020-21

Subject: Mathematics

Practice Question Paper 3 (Theory)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This question paper contains two **parts A and B**. Each part is compulsory. Part A carries **24** marks and Part B Carries **56** marks
- 2. **Part-A** has Objective Type Questions and **Part-B** has Descriptive Type Questions.
- 3. Both Part A and Part B have choices.

Part-A:

- 1. It consists of two sections- I and II
- 2. Section I comprises of 16 very short answer type questions.
- 3. Section II contains **2** case studies. Each case study comprise of 5 case-based MCQs. An examinee is to Attempt **any 4 out of 5 MCQs.**

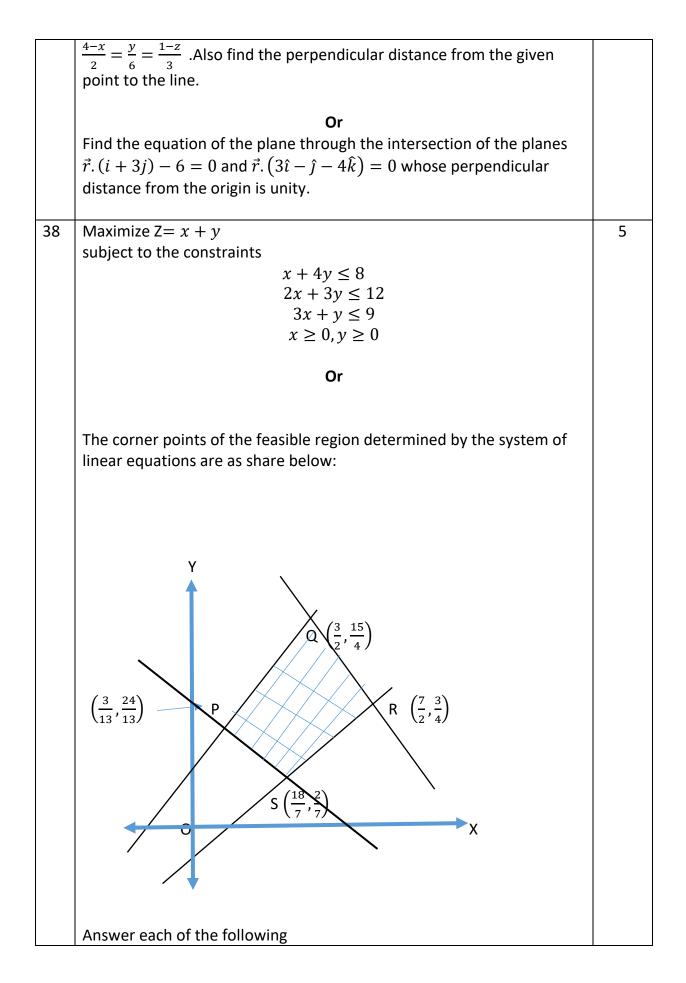
Part –B:

- 1. It consists of three sections- III, IV and V.
- 2. Section III comprises of 10 questions of 2 marks each.
- 3. Section IV comprises of 7 question of **3 marks** each.
- 4. Section **V** comprises of 3 questions of **5 marks** each.
- Internal choice is provided in 3 questions of Section –III, 2 questions of Section- IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

Sr.	Part-A	Marks
No.		
	Section I	
	All questions are compulsory. In case of internal choices attempt any	
	one.	
1.	Consider f: $R_+ \rightarrow [4, \infty]$ given by $f(x) = x^2 + 4$. Check whether the function is one-one or not.	1

	Or	
	Let R be the relation in the set $\{1, 2, 3, 4\}$ given by $R =$	
	$\{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$ Is R symmetric and	
	Transitive?	
2.	Is the function $f: N \to N$, given by $f(1) = f(2) = 1$ and $f(x) = 1$	1
	$x - 1$ for every $x \ge 2$ is onto?	
3.	An equivalence relation R in A divides it into equivalence classes	1
	A_1, A_2, A_3 . What is the value of $A_1 \cup A_2 \cup A_3$ and $A_1 \cap A_2 \cap A_3$.	
	Let A $\{1, 2, 3, \}$ The number of equivalence relations containing $(1, 2)$ is	
4	If A is a matrix of order m X n and B is a matrix such that AB' and B'A	1
-	are defined. The order of B is	-
5	The elements of a 3x4 matrix are given by $a_{ij} = \frac{1}{2} -3i+j $. Write the	1
	value of $a_{32} - a_{14}$.	
6	If A and B are square matrix of order 3 and $ A = 5$, $ B = 3$, then the	1
	value of 3AB is	
7	Evaluate $\int x^2 e^{x^3} dx$	1
	Or	
	Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{tanx}}{\sqrt{cotx} + \sqrt{tanx}} dx$.	
	$\int \int dt $	
8	Find the area of the region bounded by the curve $y = x^2$ and the line	1
0	y = 4.	-
	y = 1.	
9	Write the order and degree of the differential equation	1
	$2x^2 \frac{d^2 y}{dx} - 3 \left(\frac{dy}{dx}\right)^2 + y = 0$	
	Or	
	What is the value of the constant of integration in the particular	
	solution of the differential equation $dy = 2x$	
	$\frac{dy}{dx} = \frac{2x}{v^2} if \ f(-2) = 3$	
10	\rightarrow \rightarrow	1
	Find the projection of $a = 2\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$ on $b = \hat{\imath} + 2\hat{\jmath} + \hat{k}$	

		
11	Find the area of a parallelogram whose two adjacent sides are	1
	$\hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j}$.	T
12	For what value of 'k', the matrix $\begin{pmatrix} 2 & 5 \\ k & 10 \end{pmatrix}$ is a singular matrix?	1
13	If a plane has the intercepts a, b, c and is a distance of 'p' units from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \dots$ fill in the blank.	1
14	Find the coordinates of the point where the line $\frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5}$ crosses the ZX- plane.	1
15	Given two independent events A and B such that P(A)=0.3 and P(B)=0.6. find P(A and not B).	1
16	Whether true or false. If A and B are events such that $P(A B)=P(B A)$, then $A \cap B = \emptyset$.	1
	SECTION II	
	Both the case study questions are compulsory.	
	Attempt any 4 sub parts from each question. Each	
	question carries 1 mark.	
17	An open toy box with a square base is to be made out of a given quantity of metal sheet of area c^2 .	4
	Based on the above information answer following. a) If x represents the side of square base and y represents the	


b) The volume of the toy box V expressed as a function x is a) $V = xy^2$ b) $V = \frac{c^2x - x^3}{4}$ c) $V = \frac{x^3 - c^2 x}{4}$ d) $V = \frac{x^2(c^2x - x^2)}{4}$ c) The maximum volume of the box is. a) $\frac{c^2}{6\sqrt{3}}$ b) $\frac{6c^2}{\sqrt{3}}$ c) $\frac{\sqrt{3}c^2}{6}$ d) $\frac{c^3}{6\sqrt{3}}$ d) If the box were to be closed then the relation between x and y would be a) $2x^2 + 4xy = c^2$ b) $4x^2 + 2xy = c^2$ c) $6xy = c^2$ d) $6x^2 = c^2$ e) If the box were to be closed then the volume of the box expressed as a function of x. a) $\frac{x^2(c^2 - 2x^2)}{4}$ b) $V = \frac{c^2x - 2x^3}{4}$ c) $V = x^3$ d) $V = \frac{2x^3 - c^2x}{4}$	
By examining the Covid-19 test report of some laboratory, the probability that a person is diagnosed Covid-19 positive when he is actually suffering from it is 0.99. The probability that the report incorrectly diagnosed a person to be Covid-19 positive on the basis of report is 0.001. In a certain city 300 of 1000 persons suffer from Covid- 19. Based on the above information answer the following.	4
 The conditional probability that a person is diagnosed Covid- 19 positive given that he actually has Covid-19 	

	a) 0.7 b) 0.99 c) 0.001 d) 0.3	
ii)	A person is selected at random and is diagnosed with Covid- 19. What is the chance that he actually has Covid-19	
	 a) 0.99 b) 0.91 c) 297/304 d) 304/297 	
iii)	MCD wants to keep a check, so an officer during checking selects the report randomly. According to the report, person is diagnosed Covid-19 positive. What is the probability that the person doesn't have actually Covid-19.	
	 a) 0.001 b) 7/297 c) 7/2977 d) 0.99 	
iv)	Total probability of a person being diagnosed Covid-19 positive. a) 1 b) 0.6933 c) 0.2977 d) 22%	
v)	Let E be the event of person being diagnosed Covid-19 positive and let E ₁ and E ₂ be the events that he actually has Covid-19 and he actually doesn't have Covid-19 then find $\sum_{i=1}^{2} P(E_i E)$	
	a) 0.991 b) 1 c) 92% d) 0.989	

	Part- B	
	Section III	
19	Find the value of $tan^{-1}(1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)$	2
20	Solve for 'x' $(x -5 -1) \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ 4 \\ 1 \end{pmatrix} = 0$ Or $2 \begin{pmatrix} 3 & 4 \\ 5 & x \end{pmatrix} + \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 10 & 5 \end{pmatrix}$ Find $(x - y)$.	2
21	Find K so that the function $f(x) = \begin{cases} kx + 1, & \text{if } x \le \pi \\ cosx, & \text{if } x > \pi \end{cases}$ Is continuous at $x = \pi$.	2
22	Find the slope of the normal to the curve $x = 1 - asin\theta$, $y = bcos^2\theta$ at $\theta = \frac{\pi}{2}$.	2
23	Find $\int e^{x} \frac{\sin^{4}x - \cos^{4}x}{\sin x - \cos x} dx$ Or Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{7}x dx$	2
24	What is the area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$, $x = 2$.	2
25	Solve the differential equation $\frac{dy}{dx} = x^{3} cosec \ y, \text{ given that } f(0) = 0$	2

26	Find the vector equation of a plane passing through A(2, 5, -3), B(-2,-3, 5) and c(5, 3, -3).	2
27	Find the distance between lines	2
28	The random variable x has a probability distribution P(x) of the following form, where k is a number, $P(X=x) = \begin{cases} k, & if \ x = 0\\ 2k, & if \ x = 1\\ 3k, & if \ x = 2\\ 0. & other \ wise \end{cases}$ Determine the value of $p(X \le 2)$.	2
	Section IV All questions are compulsory. In case of internal choices attempt any one.	
29	Show that the relation R in the set $A=\{x \in Z : 0 \le x \le 12\}$, given by $R=\{(a, b : a - b) \text{ is a multiple of } 4\}$ Is an equivalence relation.	3
30	If $y = x^a + x^{sinx}$, find $\frac{dy}{dx}$	3
31	If $y=3e^{2x} + 2e^{3x}$ Prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ Or If $x = a(\cos\theta + \theta \sin\theta)$ $y = a(\sin\theta - \theta \cos\theta)$	3

3 3 3 3
3
3
3
3
3
3
5

i.	Let $Z = x + 2y$ be the objective function. Find the maximum and minimum value of Z and also the corresponding points at which the maximum and minimum values occurs.	
11.	Let $Z = px + qy$, where $p, q > 0$ be the objective function. Find the condition on p and q so that the maximum Z occurs at $Q\left(\frac{3}{2}, \frac{15}{4}\right)$, $R\left(\frac{7}{2}, \frac{3}{4}\right)$. Also mention the number of optimal solutions in this case.	