Class: XII Session: 2020-21

Subject: Mathematics

Practice Question Paper 5 (Theory)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

- 1. This question paper contains two **parts A and B**. Each part is compulsory. Part A carries **24** marks and Part B Carries **56** marks
- 2. **Part-A** has Objective Type Questions and **Part-B** has Descriptive Type Questions.
- 3. Both Part A and Part B have choices.

Part-A:

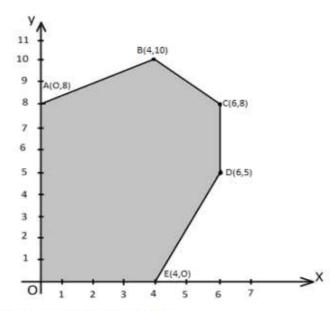
- 1. It consists of two sections- I and II
- 2. Section I comprises of 16 very short answer type questions.
- **3.** Section **II** contains **2** case studies. Each case study comprise of 4 case-based MCQs.

Part -B:

- 1. It consists of three sections- III, IV and V.
- 2. Section **III** comprises of 10 questions of **2 marks** each.
- 3. Section **IV** comprises of 7 question of **3 marks** each.
- 4. Section **V** comprises of 3 questions of **5 marks** each.
- 5. Internal choice is provided in **3** questions of Section –III, **2** questions of Section- IV and **3** questions of Section-V. You have to attempt only one of the alternatives in all such questions

Sr.	Part-A		
No.			
	Section I		
	All questions are compulsory. In case of internal choices attempt		
	any one.		
1.	If A is a square matrix of 3 order and A =5, then find the value of 2A	1	
	OR		
	If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A'$, what will be the relation between x and y.		
2.	An equivalence relation R in A is divided into equivalence classes A1, A2, A3. What is the value of A1UA2UA3 and A1NA2NA3.	1	
3.	If matrix A = $\begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symmetric, find the value of a and b.	1	
	OR		
	If A = $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is such that A^2 = I. Find the realtion between α , β , γ .		
4.	What is the property of relation if each element of A is related to itself?	1	
5.	Check if relation R in the set R of real numbers defined as $R = \{(a,b) : a < b\}$ is symmetric.	1	
6.	Suppose P and Q are two different matrices of order 3×n and n×p, then what will be the order of P×Q?	1	
7.	Evaluate $\int x^2 e^{x^3} dx$	1	
	OR		
	Find the value of $\int_0^{\pi/2} \cos x e^{\sin x} dx$		
8.	A card is picked at random from a pack of 52 cards. Given that picked card is queen, find the probability to be spade.	1	
9.	A die is thrown once. Let A be the event that number obtained is greater than 3. Let B be the event that number obtained is less than 5. Find the value of P(AUB).	1	

10.	Find the vector equation of line which passes through point (3,4,5) and is parallel to vector $2\hat{\imath}+2\hat{\jmath}-3\hat{k}$.	1
	OR	
	Find the distance of a point P (a,b,c) from x axis.	
11.	Find the order and degree of differential equation	1
	$x^2 \left[\frac{d^2 y}{dx^2} \right] = \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^4$	
12.	A line makes an angle α , β , γ with x axis, y axis and z axis. Find the value of $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$.	1
13.	If line $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-5}{-1}$ is parallel to plane px+3y-z+5=0. Find the value of p.	1
14.	Evaluate $\int_{-\pi/2}^{\pi/2} x^2 \sin x dx$	1
	OR	
	$\int_{-\sqrt{x}}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} dx$	
	$\int_2 \sqrt{x} + \sqrt{10 - x}$	
15.	Find the area bounded by curve $y=x^2$, the x axis and lines x=-1 and	1
	x=1.	
	OR	
16.	Find the area region bounded by curve $x = y^2$, y axis, line y=3 and y=4. For what value of n will the following line be a homogenous	1
10.	differential equations	•
	$\frac{dy}{dx} = \frac{x^3 - y^n}{x^2y + xy^2}$	
	OR	
	Find the integrating factor of differential equation	
	$\frac{dy}{dx}(x \log x) + y = 2 \log x$	
	$dx = 2 \log x$	
	SECTION – II	
	Case study based MCQ's (There are 2 quetions of case studies with 5 MCQ's each, all are compulsory)	
17.	A rectangle of perimeter 36 cm is rolled out to form cylinder of	
	volume as large as possible. Based on this information, answer the	
	following:	
	V	
	x	


	(i) If x and y represent the length and breadth of rectangular region, then relation between variable is:			
		a) X= 18-y		
		b) Y=18-x		
		c) 2y=18-2x		
		d) 2x=36-y		
	(ii)	Volume of formed cylinder V expressed as function of x is:	1	
		a) $V(x) = \pi x^3 (x - 18)$		
		b) $V(x) = \pi(18x^2 - 18)$		
		c) $V(x) = \pi (18x^2 - x^3)$		
		d) $V(x) = \pi(18x^3 - x^2)$		
	(iii)	The dimensions of rectangle for maximum volume should be:	1	
		a) X=12, y=6		
		b) X=10, y=8 c) X=8, y=2		
		d) X=11, y=7		
		ω, <i>κ</i> 11, γ <i>γ</i>		
	(iv)	Maximum volume of cylinder:	1	
		a) $846\pi \ cm^3$		
		b) $864\pi \ cm^3$ c) $684\pi \ cm^3$		
		d) 866π cm ³		
		,		
	(v)	The value of $\frac{d^2v}{dx^2}$ at maximum point is	1	
		(a)-36π		
		(b)-63 π		
		(c) 36π		
10	Thora	(d) 63π		
18.	There are 3 urns containing 2 white and 3 black balls, 3 white and 2 black balls and 4 white and 1 black balls respectively. There is an			
	equal probability of each urn being chosen. A ball is drawn at random			
	from the chosen urn and it is found to be white. There are 3 urns U1,			
	U_2, U_3			
	E_1 – an event where ball is chosen from U_1			
	E_2 - an event where ball is chosen from U_2			
	E_3 - an event where ball is chosen from U_3			
	E- an event where white ball is drawn			
	Based	on this information, answer the following:		

	i) What is the value of $P(U_1)$?	1
	a) 2/3	
	b) 3/3	
	c) 1/3	
	d) 3/2	4
	ii) Calculate $P(E_2)$	1
	a) 2/3	
	b) 1/3	
	c) 2/5	
	d) $4/5$	1
	iii) The value of $P(E/E_1)$ and $P(E/E_3)$ will be?	1
	a) 4/5, 2/5 b) 2/5, 3/5	
	c) 3/5, 4/5	
	d) 2/5, 4/5	
	iv) Find the probability that ball drawn was from second urn?	1
	a) 1/3	1
	b) 4/5	
	c) 3/15	
	d) 3/5	
	v) What is the value of $P(E_2).P(E/E_2)$?	1
	(2) (2) (2) (2) (2) (3) (4) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	
	PART B	
	SECTION III	
10	1 (COSY) -3TT T	2
19.	Express $tan^{-1}\left(\frac{cosx}{1-sinx}\right): \frac{-3\pi}{2} < x < \frac{\pi}{2}$ in simplest form	2
20	r_2 2 01	2
20.	Find a matrix A such that 2A-3B+5C=0 where B= $\begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix}$	2
	And $C = \begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$	
	And C = [7 1 6]	
	OR	
	Solve for x and y	
	$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} -8 \\ 11 \end{bmatrix} = 0$	
	113 133 1113	
21.	If function f is defined as:	2
1		
	$f(x) = f(x) = \int \frac{x^2-9}{2}, x \neq 3$	
	$f(x)=f(x)=\begin{cases} \frac{x^2-9}{x-3}, & x \neq 3 \\ k, & x=3 \end{cases}$ is continuous at x=3. Find k	
22.	$f(x)=f(x)=\begin{cases} \frac{x^2-9}{x-3}, & x\neq 3\\ k, & x=3 \end{cases}$ is continuous at x=3. Find k Find the equation of tangent and normal to the curve	2
22.	$f(x)=f(x)=\begin{cases} \frac{x^2-9}{x-3}, & x\neq 3\\ k, & x=3 \end{cases}$ is continuous at x=3. Find k Find the equation of tangent and normal to the curve $16x^2+9y^2=145 \text{ at (2,3)}$	2
22.	Find the equation of tangent and normal to the curve	2

23.	Evaluate $\int \frac{\cos 2x + 2 \sin^2 x}{\cos^2 x} dx$	2
	OR Cos²x	
	$\int_0^a \frac{dx}{1+4x^2} = \frac{\pi}{8}$ Find the value of a	
24.	Find the area bounded by a parabola $y^2 = x$ and straight line 2y=x	2
25.	Find the particular solution of the diffrential equation	2
	$\frac{dy}{dx} + 2y \ tanx = sinx$ at y=0 and x= $\pi/3$	
2.5	un	2
26.	Using vector show P(2,-1,3), Q(3,-5,1) and R(-1,11,9) are collinear	2
27.	Find the vector equation of plane that passes through the point	2
	(1,0,0) and contains the line \vec{r} - $\lambda\hat{j}$	
28.	Given E, F are events such that P(E)=0.8, P(F)=0.7, P(ENF)=0.6. Find	
	$P(ar{E}/ar{F})$	
	OR (4)	2
	If $P(A \cap B) = \frac{7}{10}$, $P(B) = \frac{17}{20}$ find $P\left(\frac{A}{B}\right)$	
	SECTION IV	
	7 questions of 3 marks each	
29.	Show that function f in A = R - $\{2/3\}$ defined as function $f(x) = \frac{4x+3}{6x-4}$.	3
	is one-one and onto. $6x-4$	
30.	Prove that curve $x=y^2$ and $xy=k$ cut at right angles if	
	$8k^2 = 1$	3
	OR	3
	Differentiate $\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, $-\frac{\pi}{4} < x < \frac{\pi}{4}$	
31.	Using integration, find the area of region in the first quadrant	3
	enclosed by x axis, the line y=x and circle $x^2 + y^2 = 32$	
32.	Find the interval in which the function $f(x) = \frac{x^4}{4} - x^3 - 5x^2 + 24x + 2$	3
	is:	
	a) Strictly increasing	
	b) Strictly decreasing	

33.	Solve $\int \frac{2 \cos x + 1}{(1 - \sin x)(1 + \sin^2 x)} dx$	3
	OR	
	If $\int \frac{dx}{(x+2)(x^2+1)} = a\log 1+x^2 + btan^{-1}x + \frac{1}{5}\log x+2 + C$ Find the	
	values of a and b	
34.	Solve the differential equation x dy - y dx = $\sqrt{x^2 + y^2}$ dx	3
35.	If $\log(x^2 + y^2) = 2tan^{-1}\left(\frac{y}{x}\right)$, show that $\frac{dy}{dx} = \frac{x+y}{x-y}$	3
	SECTION V	
	3 questions of 5 marks each	
36	Evaluate the product AB where $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$.	
	Hence, solve the system of linear equation: x-y=3 2x+3y+4z=17	
	Y+2z=7	
	OR	5
	Solve the following system of equations	
	$\begin{bmatrix} 3 & 0 & 3 \\ 2 & 1 & 0 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 2y \\ z \\ 3y \end{bmatrix}$	
37		
	Maximize Z = 15x + 10y	
	Subject to $3x + 2y \le 80$	
	$2x+3y \leq 70$	
	$x,\ y\geq 0$	5
	OR	
	Find the coordinates of foot of perpendicular drawn from origin to the plane 3y+4z-6=0	
38	Find the Cartesian equation of plane passing through points	5
	(2,2,-1), (3,4,2), (7,0,6). Also find the vector equation of a plane passing through (4,3,1) and parallel to the plane obtained above.	

The corner points of the feasible region determined by the system of linear constraints are as shown below:

Answer each of the following:

- (i) Let Z = 3x 4y be the objective function. Find the maximum and minimum value of Z and also the corresponding points at which the maximum and minimum value occurs.
- (ii) Let Z = px + qy, where p, q > o be the objective function. Find the condition on p and q so that the maximum value of Z occurs at B(4,10) and C(6,8). Also mention the number of optimal solutions in this case.