ANSWER KEY WITH HINTS OF

DOE PRACTICE PAPER - 1 (TERM - 1) (SESSION 2021-22)
CLASS XII
MATHEMATICS (CODE: 041)

	SECTION - A		
Q.NO.	CORRECT OPTION	HINT/MAIN POINTS	MARKS
1.	(d)	$\begin{aligned} & \text { As, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \\ & \text { so, } f(x)=\frac{\pi}{2} \end{aligned}$ Thus range of $f(x)$ is $\left\{\frac{\pi}{2}\right\}$	1
2.	(d)	$\begin{aligned} & \sec ^{-1}(2)+\sin ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}(-\sqrt{3})=\frac{\pi}{3}+\frac{\pi}{6}-\frac{\pi}{3} \\ & =\frac{\pi}{6} \end{aligned}$	1
3.	(a)	Not Reflexive as (c, c) $\notin \mathrm{R}$, By definition, R is symmetric as well as Transitive	1
4.	(b)	As $(2,2) \notin R$, so R is not Reflexive As $(2,3) \varepsilon R,(3,2) \varepsilon R$ but $(2,2) \notin R$, so R is not Transitive By definition, R is symmetric.	1
5.	(d)	As, $\|\operatorname{adj} A\|=\|A\|^{2}=265$, so $\|A\|=16$ or -16 Thus, the sum of all possible values of $\|A\|$ is zero.	1
6.	(d)	$\begin{aligned} & {\left[\begin{array}{ll} x-2 & 5+y \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]=O} \\ & \Rightarrow\left[\begin{array}{ll} 5+y & x-2 \end{array}\right]=O=\left[\begin{array}{ll} 0 & 0 \end{array}\right] \end{aligned}$ On Comparing, $\mathrm{y}=-5, \mathrm{x}=2$, so $\mathrm{x}+\mathrm{y}=-3$	1
7.	(b)	$\begin{aligned} & \text { Let, } A=\left[\begin{array}{lll} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{ccc} a^{2} & 0 & 0 \\ 0 & b^{2} & 0 \\ 0 & 0 & c^{2} \end{array}\right] \\ & \text { As } A^{2}=A \Rightarrow\left[\begin{array}{lll} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right]=\left[\begin{array}{ccc} a^{2} & 0 & 0 \\ 0 & b^{2} & 0 \\ 0 & 0 & c^{2} \end{array}\right] \end{aligned}$ So, $a=0$ or -1 , similarly b and c can take 2 values (0 and -1) Thus, total number of possible matrices are $2 \times 2 \times 2=8$	1

8.	(d)	$\begin{aligned} & {\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]+\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{ll} 3 & 4 \\ 5 & 6 \end{array}\right],} \\ & \Rightarrow\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{ll} 2 & 5 \\ 3 & 3 \end{array}\right] \end{aligned}$ Thus, $a+c-b-d=5-5-3=-3$	1
9.	(c)	$A s,\left(A-A^{\top}\right)^{\top}=-\left(A-A^{\top}\right)$ So, $\left(A-A^{\top}\right)$ is not Symmetric matrix,	1
10.	(d)	$\left\|2 A^{\top}\right\|=2^{3}\left\|A^{\top}\right\|=8\|A\|=24$	1
11.	(d)	$y=\frac{x^{a}}{x^{a}+x^{b}+x^{c}}+\frac{x^{b}}{x^{a}+x^{b}+x^{c}}+\frac{x^{c}}{x^{a}+x^{b}+x^{c}}=\frac{x^{a}+x^{b}+x^{c}}{x^{a}+x^{b}+x^{c}}$ Thus, $y=1 \Rightarrow \frac{d y}{d x}=0$	1
12.	(c)	By definition, $3 \times 5=a \times b=c \times d$, thus $a=c=3$ and $b=d=5$ Thus, $a c+b d=9+25=34$	1
13.	(a)	Continuous function as LHL $=$ RHL $=f(4)=11$ But not differentiable as LHD \neq RHD (LHD $=2$, RHD $=8$)	1
14.	(c)	$\begin{aligned} & \text { If } x^{3}-3 x^{2} y+y^{3}=2021+x y \text { then } \\ & 3 x^{2}-3\left(x^{2} \frac{d y}{d x}+2 x y\right)+3 y^{2} \frac{d y}{d x}=x \frac{d y}{d x}+y \\ & \Rightarrow \frac{d y}{d x}=\frac{y+6 x y-3 x^{2}}{3 y^{2}-3 x^{2}-x} \end{aligned}$	1
15.	(d)	$y=x^{3} \Rightarrow$ Slope of tangent $=3 x^{2}$ at the point $(2,8)$ Slope of tangent at the point $(2,8)$ is $3(4)=12$	1
16.	(b)	Z at $(3,0)=3 p, Z$ at $(1,1)=p+q$ As Z is minimum at both the points so $3 p=p+q \Rightarrow 2 p=q$	1
17.	(b)	$8 x+18 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{-4 x}{9 y}=0$ Thus, $x=0$, so $0+9 y^{2}=36 \Rightarrow y= \pm 2$ Point on the curve is ($0, \pm 2$)	1
18.	(b)	$\begin{aligned} & A s, \frac{d y}{d x}=-3 x^{2}+6 x=-3 x(x-2) \\ & \text { so, } \frac{d y}{d x}=+ \text { ve in }(0,2) \end{aligned}$	1

19.	(d)	$\begin{aligned} & y=e^{x} \Rightarrow \frac{d y}{d x}=e^{x}, \frac{d^{2} y}{d x^{2}}=e^{x} \\ & \text { so, } \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x}-2 e^{x}=-e^{x}=-y \end{aligned}$	1
20.	(d)	$\begin{aligned} & \frac{d y}{d t}=3 \cos ^{2} t \cdot(-\sin t), \frac{d x}{d t}=3 \sin ^{2} t \cdot(\cos t) \\ & \frac{d y}{d x}=\frac{-3 \cos ^{2} t \cdot \sin t}{3 \sin ^{2} t \cdot \cos t}=-\cot t \end{aligned}$	1
SECTION - B			
21.	(b)	$\cos ^{-1} x+\cos ^{-1} y=\pi-\left(\sin ^{-1} x+\sin ^{-1} y\right)=\pi-\frac{2 \pi}{3}=\frac{\pi}{3}$	1
22.	(a)	As $f(x)=f(y) \Rightarrow x=y$, so $f(x)$ is one-one function And as range of f is $R=$ co-domain, so f is onto function Alternative method: Graph of $f(x)$ is a line which is strictly increasing for all values of x, so its on-one function and Range of $f(x)$ is R which is equal to R so oto function.	1
23.	(c)	$A s, a \searrow a, S o \mathrm{R}$ is not reflexive $A s, a>b$ does not implies $\mathrm{b}>\mathrm{a}$, So R is not symmetric As $a>b, b>c \Rightarrow a>c$, So R is Transitive	1
24.	(a)	we know that, $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ and $\frac{-\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$, $\text { so, } 0 \leq \sin ^{-1} x+\frac{\pi}{2} \leq \pi \Rightarrow 0 \leq 2 \sin ^{-1} x+\cos ^{-1} x \leq \pi$ Thus $a=0, b=\pi$	1
25.	(b)	$\begin{aligned} & A^{-1}=\left[\begin{array}{lll} 3 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right] \Rightarrow\left\|A^{-1}\right\|=-9 \\ & \text { Thus, }\|A\|=\frac{-1}{9} \cdot \text { so, }\|\operatorname{adj} A\|=\|A\|^{2}=\frac{1}{81} \end{aligned}$	1
26.	(d)	$\begin{aligned} & A^{2}=A \cdot A=A B \cdot A=A \cdot B=A \\ & B^{2}=B B=B A \cdot B=B \cdot A=B \\ & (A+B)(A-B)=A^{2}+B A-A B-B^{2}=A+B-A-B=0 \end{aligned}$	1

27.	(d)	$\begin{aligned} & 5^{x}+5^{y}=5^{x+y} \Rightarrow 5^{-y}+5^{-x}=1 \\ & -\left(5^{-y} \log 5\right) \frac{d y}{d x}+-\left(5^{-x} \log 5\right)=0 \Rightarrow \frac{d y}{d x}=-5^{y-x} \end{aligned}$	1
28.	(b)	$f^{\prime}(x)=6 x^{2}-6 x-36=6(x-3)(x+2)$ Thus, $f(x)$ is decreasing in $(-2,3)$	1
29	(d)	As curves cut orthogonally at $(1,1)$, so $(1,1)$ must satisfy ay $+\mathrm{x}^{2}=7$. Thus $\mathrm{a}(1)+1=7 \Rightarrow \mathrm{a}=6$	1
30.	(a)	$\begin{aligned} & A s, \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=e^{a} \\ & \Rightarrow \frac{\left(x^{2}+y^{2}\right)\left(2 x-2 y y^{\prime}\right)-\left(x^{2}-y^{2}\right)\left(2 x+2 y y^{\prime}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0 \\ & \Rightarrow 4 x y^{2}=4 x^{2} y y^{\prime} \Rightarrow \frac{d y}{d x}=\frac{y}{x} \end{aligned}$	1
31.	(a)	By definition of area of triangle, $\|-3(-k)+3(k)\|=18$ $\mathrm{k}= \pm 3$	1
32.	(d)	$A s,\left[\begin{array}{c}x+y+z \\ y+z \\ z\end{array}\right]=\left[\begin{array}{l}6 \\ 3 \\ 2\end{array}\right]$, then $z=2, y+z=3, x+y+z=6$ Thus, $z=2, y=1, x=3 \Rightarrow 2 x+y-z=5$	1
33.	(b)	$\text { As, } y=\tan ^{-1} x, \text { then } \frac{d y}{d x}=\frac{1}{1+x^{2}}$ and $\frac{d^{2} y}{d x^{2}}=\left.\frac{-2 x}{\left(1+x^{2}\right)^{2}} \Rightarrow \frac{d^{2} y}{d x^{2}}\right\|_{x=1}=\frac{-2}{4}$ Thus, $4 \frac{d^{2} y}{d x^{2}}=-2$	1
34.	(b)	As, $2 \mathrm{~A}^{2}+\mathrm{A}=\mathrm{I}$, on pre-multiplying by A^{-1}, we get $2 A+I=A^{-1}$	1
35.	(a)	Since $f(x)=2 \sin 2 x$, Value of $\sin 2 x$ lies between -1 to 1 , so maximum value of $f(x)$ is 2	1
36.	(c)	At (1, 4), $13=a(1)+4 \Rightarrow a=9$	1
37.	(b)	As, $\left(L_{1}, L_{1}\right) \notin R$ (Every line coincides at all points with itself) So, R is not Reflexive. As, $\left(L_{1}, L_{2}\right) \varepsilon R$ implies $\left(L_{2}, L_{1}\right) \varepsilon R$, So, R is Symmetric.	1

		As, $\left(L_{1}, L_{2}\right) \varepsilon R,\left(L_{2}, L_{3}\right) \varepsilon R$ does not implies $\left(L_{1}, L_{3}\right) \varepsilon R$, So, R is not Transitive. (For example In case of two parallel lines L_{1}, L_{3} intersect by a line L_{2})	
38.	(c)	As for 3 and 4 from set X we have same image c in set Y, so f is not one-one function. Further element d has no pre-image in set X, so f is not onto function.	1
39.	(a)	The feasible region for an LPP is always a convex polygon (In general, the feasible region of a Linear Programming Problem (LPP) is the intersection of the half-spaces which are defined by the hyper planes. From this observation, we can conclude that the feasible region of an LPP is always a convex polygon)	1
40.	(b)	$y^{\prime}=e^{x}$, slope of tangent at $(0,1)=1$ Thus, equation of tangent is $y-1=x$ which intersect the x-axis at $x=-1$, so the required point is $(-1,0)$	1
SECTION - C			
41.	(a)	From the graph, The feasible region lies in First Quadrant	1
42.	(b)	For $f(x)=\cos x, f^{\prime}(x)=-\sin x$ which is negative on $\left(0, \frac{\pi}{2}\right)$ So, $\cos x$ is decreasing function on $\left(0, \frac{\pi}{2}\right)$	1
43.	(d)	$f^{\prime}(x)=\cos x-a$, $\operatorname{sof}(x)$ is decreasing on $x \varepsilon R$, when a $\varepsilon[1, \infty)$ because $\cos x \leq 1$	1
44.	(c)	In a linear programming problem, If the feasible region is bounded then objective function $Z=p x+q y$ has Maximum and minimum value both.	1
45.	(d)	$A=\left[\begin{array}{cc}6 x & 8 \\ 3 & 2\end{array}\right] \Rightarrow\|A\|=12 x-24=0 \Rightarrow x=2$	1
46.	(c)	$\frac{C}{t}=k v^{2}, \text { so } 48=k(16)^{2} \cdot T h u s, 16 k=3$	1

47.	(d)	$\frac{C}{t}=\frac{3}{16} v^{2}+1200$ $\Rightarrow C=\frac{3}{16} v^{2} t+1200 t=\frac{3}{16} v^{2}\left(\frac{1000}{v}\right)+1200\left(\frac{1000}{v}\right)$ $C=\frac{375}{2} v+\frac{1200000}{v}$.	1
48.	(b)	$\frac{d C}{d v}=\frac{375}{2}-\frac{1200000}{v^{2}}=0 \Rightarrow v=80$ $\frac{d^{2} C}{d v^{2}}=$ positive at $v=80$	1
49.	(a)	The fuel cost (In Rs.)for the train to travel 1000 km at the most economical speed is $C=\frac{375}{2} v=\frac{375}{2}(80)=15000$	1
50.	(b)	The total cost of the train to travel 1000 km at the most economical speed is $C=\frac{375}{2} v+\frac{1200000}{v}=15000+\frac{1200000}{80}$ $C=30000$	1

