<u>ANSWER KEY WITH HINTS OF</u> <u>DOE PRACTICE PAPER – 1 (TERM – 1) (SESSION 2021 – 22)</u> <u>CLASS XII</u> <u>MATHEMATICS (CODE: 041)</u>

		SECTION – A	
Q.NO.	CORRECT OPTION	HINT/MAIN POINTS	MARKS
1.	(d)	$As, \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$	1
		$so, f(x) = \frac{\pi}{2}$	
		Thus range of f(x) is $\{\frac{\pi}{2}\}$	
2.	(d)	$\sec^{-1}(2) + \sin^{-1}(\frac{1}{2}) + \tan^{-1}(-\sqrt{3}) = \frac{\pi}{3} + \frac{\pi}{6} - \frac{\pi}{3}$	1
		$=\frac{\pi}{6}$	
		0	
3.	(a)	Not Reflexive as (c,c) ∉ R,	1
4.	(h)	By definition, R is symmetric as well as Transitive	1
4.	(b)	As $(2, 2) \notin R$, so R is not Reflexive As $(2, 3) \in R$, $(3, 2) \in R$ but $(2, 2) \notin R$, so R is not Transitive	1
		By definition, R is symmetric.	
5.	(d)	As, $ adj A = A ^2 = 265$, so $ A = 16$ or -16	
		Thus, the sum of all possible values of A is zero.	1
6.	(d)	$\begin{bmatrix} x-2 & 5+y \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} = O$	1
		$\Rightarrow \begin{bmatrix} 5+y & x-2 \end{bmatrix} = O = \begin{bmatrix} 0 & 0 \end{bmatrix}$	
		On Comparing, $y = -5$, $x = 2$, so $x + y = -3$	
7.	(b)		
		$\begin{vmatrix} Let, A = \begin{vmatrix} a & b & c \\ 0 & b & 0 \end{vmatrix} \Rightarrow A^2 = \begin{vmatrix} a & b & c \\ 0 & b^2 & 0 \end{vmatrix}$	1
		$Let, A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \Rightarrow A^{2} = \begin{bmatrix} a^{2} & 0 & 0 \\ 0 & b^{2} & 0 \\ 0 & 0 & c^{2} \end{bmatrix}$	
		$\begin{bmatrix} a & 0 & 0 \end{bmatrix} \begin{bmatrix} a^2 & 0 & 0 \end{bmatrix}$	
		$\begin{vmatrix} As & A^{2} = A \Rightarrow \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = \begin{vmatrix} a^{2} & 0 & 0 \\ 0 & b^{2} & 0 \\ 0 & 0 & c^{2} \end{vmatrix}$	
		$\begin{bmatrix} 0 & 0 & c \end{bmatrix} \begin{bmatrix} 0 & 0 & c^2 \end{bmatrix}$	
		So, $a = 0$ or -1 , similarly b and c can take 2 values (0 and -1)	
		Thus, total number of possible matrices are 2 x 2 x 2 = 8	

8.	(d)		
0.	(4)	$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix},$	1
		$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 3 & 3 \end{bmatrix}$	
		$\begin{bmatrix} -2 & c & d \end{bmatrix}^{-} \begin{bmatrix} 3 & 3 \end{bmatrix}$	
		Thus, a + c - b - d = 5 - 5 - 3 = -3	
9.	(c)	$As, (A - A^{T})^{T} = - (A - A^{T})$	
		So, $(A - A^{T})$ is not Symmetric matrix,	1
10.	(d)	$ 2A^{T} = 2^{3} A^{T} = 8 A = 24$	
			1
11.	(d)	$y = \frac{x^{a}}{x^{a} + x^{b} + x^{c}} + \frac{x^{b}}{x^{a} + x^{b} + x^{c}} + \frac{x^{c}}{x^{a} + x^{b} + x^{c}} = \frac{x^{a} + x^{b} + x^{c}}{x^{a} + x^{b} + x^{c}},$	1
			T
		Thus, $y = 1 \Longrightarrow \frac{dy}{dx} = 0$	
12.	(c)	By definition, $3 \times 5 = a \times b = c \times d$, thus $a = c = 3$ and $b = d = 5$	
		Thus, $ac + bd = 9 + 25 = 34$	1
13.	(2)	Continuous function as $ I I = P I = f(4) = 11$	
15.	(a)	Continuous function as LHL = RHL = $f(4) = 11$ But not differentiable as LHD \neq RHD (LHD = 2, RHD = 8)	1
			-
14.	(c)	If $x^3 - 3x^2y + y^3 = 2021 + xy$ then	1
		$3x^2 - 3(x^2\frac{dy}{dx} + 2xy) + 3y^2\frac{dy}{dx} = x\frac{dy}{dx} + y$	T
		$dy = y + 6xy - 3x^2$	
		$\Rightarrow \frac{dy}{dx} = \frac{y + 6xy - 3x^2}{3y^2 - 3x^2 - x}$	
15.	(d)	$y = x^3 \Rightarrow$ Slope of tangent = $3x^2$ at the point (2, 8)	
		Slope of tangent at the point (2, 8) is 3(4) = 12	1
16.	(b)	Z at (3, 0) = 3p, Z at (1, 1) = p + q	
		As Z is minimum at both the points so $3p = p + q \Rightarrow 2p = q$	1
17.	(b)	$8x + 18y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = \frac{-4x}{9y} = 0$	1
			1
		Thus, x = 0, so $0 + 9y^2 = 36 \Rightarrow y = \pm 2$	
18.	(b)	Point on the curve is (0, ±2)	
10.	(0)	$As, \frac{dy}{dx} = -3x^2 + 6x = -3x(x-2)$ $so, \frac{dy}{dx} = +ve \text{ in } (0,2)$	1
		so, $\frac{dy}{dt} = +ve$ in (0, 2)	
		$\int dx dx$	

19.	(d)	$y = e^{x} \Longrightarrow \frac{dy}{dx} = e^{x}, \frac{d^{2}y}{dx^{2}} = e^{x}$	1
		$so, \frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx} = e^{x} - 2e^{x} = -e^{x} = -y$	
20.	(d)	$\frac{dy}{dt} = 3\cos^2 t.(-\sin t), \frac{dx}{dt} = 3\sin^2 t.(\cos t)$	1
		$\frac{dy}{dx} = \frac{-3\cos^2 t \cdot \sin t}{3\sin^2 t \cdot \cos t} = -\cot t$	
		$ax 3 \sin t \cos t$	
		SECTION – B	
21.	(b)	$\cos^{-1} x + \cos^{-1} y = \pi - (\sin^{-1} x + \sin^{-1} y) = \pi - \frac{2\pi}{3} = \frac{\pi}{3}$	1
22.	(a)	As $f(x) = f(y) \Rightarrow x = y$, so $f(x)$ is one-one function	
		And as range of f is $R = co$ -domain, so f is onto function	1
		<u>Alternative method</u> : Graph of f(x) is a line which is strictly	
		increasing for all values of x, so its on-one function and Range of f(x) is R which is equal to R so oto function.	
23.	(c)	As, a > a, So R is not reflexive	
		As, a > b does not implies b > a, So R is not symmetric	1
		As $a > b, b > c \Rightarrow a > c$, So R is Transitive	
24.	(a)		
24.	(a)	we know that, $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$	1
		and $\frac{-\pi}{2} \leq \sin^{-1} x \leq \frac{\pi}{2}$,	
		$so, 0 \le \sin^{-1} x + \frac{\pi}{2} \le \pi \Longrightarrow 0 \le 2\sin^{-1} x + \cos^{-1} x \le \pi$	
		Thus $a = 0, b = \pi$	
25.	(b)		
		$A^{-1} = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \implies A^{-1} = -9$	1
		Thus, $ A = \frac{-1}{9}$. so, $ adjA = A ^2 = \frac{1}{81}$	
26.	(d)	$A^2 = A.A = AB.A = A.B = A$	-
		$B^2 = BB = BA.B = B.A = B$	1
		$(A + B)(A - B) = A^{2} + BA - AB - B^{2} = A + B - A - B = 0$	

27.	(d)	$5^{x} + 5^{y} = 5^{x+y} \Rightarrow 5^{-y} + 5^{-x} = 1$	
		dv dv	1
		$-(5^{-y}\log 5)\frac{dy}{dx} + -(5^{-x}\log 5) = 0 \Longrightarrow \frac{dy}{dx} = -5^{y-x}$	
28.	(b)	$f'(x) = 6x^2 - 6x - 36 = 6(x - 3)(x + 2)$	
		Thus, f(x) is decreasing in (- 2, 3)	1
29	(d)	As curves cut orthogonally at (1,1), so (1,1) must satisfy	
		ay + x^2 = 7. Thus a(1) + 1 = 7 \Rightarrow a = 6	1
30.	(a)	$As, \frac{x^{2} - y^{2}}{x^{2} + y^{2}} = e^{a}$	1
		$\Rightarrow \frac{(x^2 + y^2)(2x - 2yy') - (x^2 - y^2)(2x + 2yy')}{(x^2 + y^2)^2} = 0$	
		$\Rightarrow 4xy^2 = 4x^2yy' \Rightarrow \frac{dy}{dx} = \frac{y}{x}$	
31.	(a)	By definition of area of triangle, $ -3(-k)+3(k) =18$	
		$k = \pm 3$	1
32.	(d)	$\begin{vmatrix} As, \begin{bmatrix} x+y+z\\ y+z\\ z \end{bmatrix} = \begin{bmatrix} 6\\ 3\\ 2 \end{bmatrix}, then \ z = 2, y+z = 3, x+y+z = 6$	1
		Thus, $z = 2$, $y = 1$, $x = 3 \Longrightarrow 2x + y - z = 5$	
33.	(b)	$As, y = \tan^{-1} x, then \frac{dy}{dx} = \frac{1}{1+x^2}$	1
		and $\frac{d^2 y}{dx^2} = \frac{-2x}{(1+x^2)^2} \implies \frac{d^2 y}{dx^2}\Big _{x=1} = \frac{-2}{4}$	
		$Thus, 4\frac{d^2y}{dx^2} = -2$	
34.	(b)	As, $2A^2 + A = I$, on pre-multiplying by A^{-1} , we get	
		$2A + I = A^{-1}$	1
35.	(a)	Since $f(x) = 2\sin 2x$, Value of sin 2x lies between -1 to 1,	1
		so maximum value of f(x) is 2	1
36.	(c)	At (1, 4), 13 = $a(1) + 4 \Rightarrow a = 9$	1
37.	(b)	As, $(L_1, L_1) \notin \mathbb{R}$ (Every line coincides at all points with itself) So, R is not Reflexive. As, $(L_1, L_2) \in \mathbb{R}$ implies $(L_2, L_1) \in \mathbb{R}$, So, R is Symmetric.	1
		$[1,3] (E_{1}E_{2}) \in \mathbb{N} \text{ implies} (E_{2}E_{1}) \in \mathbb{N}, \text{ So}_{1} \in \mathbb{N} \text{ Soynine Cure}.$	I I

			1
		As, $(L_1, L_2) \in \mathbb{R}$, $(L_2, L_3) \in \mathbb{R}$ does not implies $(L_1, L_3) \in \mathbb{R}$, So, R is not Transitive. (For example In case of two parallel lines L_1 , L_3 intersect by a line L_2)	
38.	(c)	As for 3 and 4 from set X we have same image c in set Y, so f is not one-one function. Further element d has no pre-image in set X, so f is not onto function.	1
39.	(a)	The feasible region for an LPP is always a convex polygon	1
		(In general, the feasible region of a Linear Programming Problem (LPP) is the intersection of the half-spaces which are defined by the hyper planes. From this observation, we can conclude that the feasible region of an LPP is always a convex polygon)	
40.	(b)	y ' = e^x , slope of tangent at (0, 1) = 1 Thus, equation of tangent is y – 1 = x which intersect the x-axis at x = -1, so the required point is (- 1, 0)	1
		x-axis at x = -1, so the required point is (- 1, 0)	
	1	SECTION – C	
41.	(a)	From the graph, The feasible region lies in First Quadrant	1
42.	(b)	For f(x) = cos x, f' (x) = - sin x which is negative on $(0, \frac{\pi}{2})$ So, cos x is decreasing function on $(0, \frac{\pi}{2})$	1
43.	(d)	f'(x) = cos x – a, so f (x) is decreasing on x ϵ R, when a ϵ [1, ∞) because cos x \leq 1	1
44.	(c)	In a linear programming problem, If the feasible region is bounded then objective function $Z = px + qy$ has Maximum and minimum value both.	1
45.	(d)	$A = \begin{bmatrix} 6x & 8\\ 3 & 2 \end{bmatrix} \Longrightarrow A = 12x - 24 = 0 \Longrightarrow x = 2$	1
46.	(c)	$\frac{C}{t} = kv^2, so \ 48 = k(16)^2.Thus, 16k = 3$	1

47.	(d)	$\frac{C}{t} = \frac{3}{16}v^2 + 1200$	1
		$\Rightarrow C = \frac{3}{16}v^{2}t + 1200t = \frac{3}{16}v^{2}(\frac{1000}{v}) + 1200(\frac{1000}{v})$	
		$C = \frac{375}{2}v + \frac{1200000}{v}.$	
48.	(b)	$\frac{dC}{dv} = \frac{375}{2} - \frac{1200000}{v^2} = 0 \Longrightarrow v = 80$	1
		$\frac{d^2C}{dv^2} = positive \text{ at } v = 80$	
49.	(a)	The fuel cost (In Rs.) for the train to travel 1000km at the most economical speed is $C = \frac{375}{2}v = \frac{375}{2}(80) = 15000$	1
50.	(b)	The total cost of the train to travel 1000km at the most economical speed is $C = \frac{375}{2}v + \frac{1200000}{v} = 15000 + \frac{1200000}{80}$	1
		<i>C</i> = 30000	