DOE PRACTICE PAPER – 1 (TERM – 1) (SESSION 2021 – 22) <u>CLASS XII</u> <u>MATHEMATICS (CODE: 041)</u>

Time Allowed: 90 Minutes

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

SECTION – A						
In this section, attempt any 16 questions out of Questions $1-20$.						
	Each question is of 1 mark weightage.					
Each	MCQ has four options with only one correct option, choose the correct	option.				
1.	The range of the function $f(x) = \tan^{-1} x + \cot^{-1} x$ is	4				
	(a) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (b) $\left[0, \pi\right]$ (c) $\left[0, \frac{\pi}{2}\right]$ (d) $\left\{\frac{\pi}{2}\right\}$	1				
2.	The value of the expression $\sec^{-1}(2) + \sin^{-1}(\frac{1}{2}) + \tan^{-1}(-\sqrt{3})_{is}$	1				
	(a) $\frac{5\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{-\pi}{3}$ (d) $\frac{\pi}{6}$					
3.	The relation R in the set {a, b, c} given by R = {(a, a), (b, b), (a, b), (b, a)}					
	is	1				
(a) symmetric and transitive, but not reflexive						
(b) reflexive and symmetric, but not transitive						
(c) symmetric, but neither reflexive nor transitive						
	(d) an equivalence relation					
4.	$A = \{1, 2, 3, 4\}$, A relation R in the set A is given by					
	R = { (1, 1), (2, 3), (3, 2), (4, 3), (3, 4) }, then relation R is	1				
	(a) Reflexive (b) symmetric (c) Transitive (d) Equivalence					
5.	If A is any square matrix of order 3×3 such that $ adj A = 256$, then					
	the sum of all possible values of A is	1				
	(a) 256 (b) 16 (c) – 16 (d) 0					

6.	If $\begin{bmatrix} x-2 & 5+y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = O$, Then x + y =	1
	(a) 0 (b) -2 (c) -1 (d) -3	
7.	If A is a diagonal matrix of order 3×3 such that $A^2 = A$, then number of	
	possible matrices A are	1
0	(a) 4 (b) 8 (c) 16 (d) 32	
8.	If $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + X = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$, where $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, Then $a + c - b - d =$	1
	(a) 13 (b) 5 (c) - 8 (d) - 3	
9.	If A is a symmetric matrix then which of the following is not	
	Symmetric matrix,	1
	(a) $A + A^{T}$ (b) $A.A^{T}$ (c) $A - A^{T}$ (d) A^{T}	
10.	If A is a non-singular square matrix of order 3 such that $ A = 3$, then	4
	value of $ 2A^{\prime} $ is (b) 6 (c) 12 (d) 24	1
11	(a) 3 (b) 0 (c) 12 (d) 24	
	If $y = \frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{c-b}+x^{a-b}} + \frac{1}{1+x^{a-c}+x^{b-c}}$, then $\frac{dy}{dx} =$	1
	$1 + \lambda + \lambda + 1 + \lambda + \lambda + \lambda + \lambda + \lambda = 1$	
	(a) x^{a+b+c} (b) x^{abc} (c) $\frac{1}{x^a + x^b + x^c}$ (d) 0	
12.	Suppose P, Q and R are different matrices of order 3 × 5, a × b and c x d	
	respectively, then value of ac + bd is, if matrix $2P + 3Q - 4R$ is defined	1
12	(a) 9 (b) 30 (c) 34 (d) 15	
13.	The function given below at $\mathbf{x} = 4$ is $\int 2x + 3, x \le 4$	1
	$\int (x) = \int x^2 - 5, x > 4$	
	(a) Continuous but not differentiable	
	(b) Differentiable but not continuous	
	(c) Continuous as well as differentiable	
14	(d) Neither continuous for differentiable dv	
17.	If $x^3 - 3x^2y + y^3 = 2021 + xy$ then $\frac{dy}{dx} =$	1
	(a) $\frac{3x^2 - 6xy - y}{2x^2 - 6xy - y}$	
	$3x^2 + 3y^2 - x$	
	(b) $\frac{3x - 6xy - y}{3y^2 - 3x^2 - x}$	
	(c) $\frac{6xy + y - 3x^2}{x^2 - x^2}$	
	$3y^2 - 3x^2 - x$	
	(d) $\frac{3x^2 - 6xy - y}{3x^2 + 3y^2 + x}$	

15.	The slope of the tangent to the curve $y = x^3$, at the point (2, 8) is						
	(a) 2	(b) 6	(c) 11	(d) 12	1		
16.	Corner points of the fea	asible region det	ermined by the s	system of linear			
	constraints are (0, 3), (1	L, 1) and (3, 0). L	et Z = px+qy, wh	ere p, q > 0.	1		
	Condition on p and q so	o that the minim	um of Z occurs a	t (3, 0) and			
	(1, 1) is	(1-) - 2-					
17	(a) $p = 2q$	(b) $q = 2p$	(c) $p = 3q$	(a) p = q			
17.	narallel to x-axis is	24x + 9y = 30 a	it which tangent	to the curve is	1		
	(a) (±2, 0)	(b) (0, ±2)	(c) (0, ±3)	(d) (±3, 0)	1		
18.	The interval in which y	$= -x^3 + 3x^2 + 202$	1 is increasing is				
	, (a) (-∞,∞)	(b) (0 <i>,</i> 2)	(c) (2 <i>,</i> ∞)	(d) (- 2 <i>,</i> 0)	1		
19.	$d^2 v$, dv					
	If x = log _e y, then $\frac{y}{dx^2}$	$-2\frac{y}{dx} =$			1		
	(a) y	(b) 2y	(c) – 2y	(d) – y			
20.	If $x = sin^3 t$, $y = cos^3 t$ th	nen $\frac{dy}{dx} =$			1		
	(a) tan t	(b) cot t	(c) - tant	(d) – cot t	T		
		SECTION	I – B				
	In this section, attempt any 16 questions out of Questions $21 - 40$.						
	Each	question is of 1	mark weightage				
Each	n MCO has four options v	with only one co	rrect option, ch	oose the correct	option.		
21.	$1 - 1 - 1 - 2\pi$	1 1					
	$ f \sin^2 x + \sin^2 y = \frac{1}{3}$	$\cos^{-1}x + \cos^{-1}x$	y =		1		
	(a) $\frac{-\pi}{2}$ (f)	$(n) \frac{\pi}{n}$	$(c) \pi$	(d) $\frac{\pi}{2}$			
	(a) 3	3	(C) <i>n</i>	(0) 2			
22.	Let $f : R \rightarrow R$ be define	ed as $f(x) = 7x -$	– 5, then				
	(a) f is one-one onto				1		
	(b) f is many-one onto						
	(c) f is one-one but n	ot onto					
	(d) f is neither one-o	ne nor onto					
23.	(d) f is neither one-of A relation R in the set of	ne nor onto of real numbers l	R is given by		1		
23.	(d) f is neither one-of A relation R in the set of $R = \{(a, b) : a > b, a, b \in \}$	ne nor onto of real numbers l = R}, The relatior	R is given by 1 R is		1		
23.	(d) f is neither one-of A relation R in the set of R = {(a, b) : $a > b$, a , $b \in$ (a) Reflexive (b) sym	ne nor onto of real numbers l E R}, The relation metric (c) Tr	R is given by R is ansitive (d)	Equivalence	1		
23.	(d) f is neither one-of A relation R in the set of R = {(a, b) : a > b, a, b e (a) Reflexive (b) sym	the nor onto of real numbers I E R, The relation metric (c) Transition $T \le b$, then	R is given by n R is ansitive (d)	Equivalence	1		
23.	(d) f is neither one-of A relation R in the set of R = {(a, b) : a > b, a , b e (a) Reflexive (b) sym If $a \le 2s \operatorname{in}^{-1} x + c \operatorname{os}^{-1} x$	ne nor ontoof real numbersa R}, The relationmetric (c) Tr $c \leq b$, then	R is given by R is ansitive (d)	Equivalence	1		
23.	(d) f is neither one-of A relation R in the set of R = {(a, b) : a >b, a , b e (a) Reflexive (b) sym If $a \le 2s \operatorname{in}^{-1} x + c \operatorname{os}^{-1} x$ (a) $a = 0, b = \pi$ (b)	the nor onto of real numbers line R, The relation metric (c) Transform $a = \pi, b = 2\pi$	R is given by a R is ansitive (d) (c) $a = \frac{-\pi}{2}, b = \frac{\pi}{2}$	Equivalence (d) $a = 0, b = \frac{\pi}{2}$	1		

25.	$If A^{-1} = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}, then \mid adj_A$	4 =		1	
	(a) $\frac{1}{9}$ (b) $\frac{1}{81}$	(c) – 9	(d) - 81		
26.	If A and B are two square m	atrices of same order su	uch that,		
	AB = A and $BA = B$, then (A	+ B)(A - B) =		1	
	(a) $A^2 - B^2$ (b) 2A	(c) 2A + 2B	(d) O		
27.	If $5^{x} + 5^{y} = 5^{x+y}$, then $\frac{dy}{dx} =$			1	
	(a) 5 ^{x-y} (b) 5 ^{y-}	-x (c) - 5 ^{x-y}	(d) - 5 ^{y-x}		
28.	The interval on which the fu	nction f (x) = $2x^3 - 3x^2$ -	– 36x + 10 is		
	decreasing is			1	
20	(a) (-∞, - 2) (b) (-	2, 3) (c) (2, 3)	(d) (3, ∞)		
29.	If the curve ay $+ x^2 = 7$ and	x ³ = y, cut orthogonally	v at (1, 1), then	1	
	the value of a is:	(c) 6	(d) 6	T	
	(d) I (D) 5	(C) = 0	(u) o		
30.	If $\log(\frac{x^2 - y^2}{x^2 + y^2}) = a$, then	$\frac{dy}{dx} =$		1	
	(a) $\frac{y}{x}$ (b) $\frac{-y}{x}$	(c) $\frac{x}{y}$	(d) $\frac{-x}{y}$		
31.	The area of a triangle with vertices (–3, 0), (3, 0) & (0, k) is 9 sq.				
	units. The value of k is $(k > 0)$))		1	
	(a) 3 (b) 6	(c) 9	(d) 12		
32.	$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix} x \begin{vmatrix} 6 \end{vmatrix}$			1	
	$ \mathbf{If} 0 \ 1 \ 1 y = 3 , then 2.$	x + y - z =		T	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$				
	(a) 2 (b) 1	(c) 3	(d) 5		
33.	If $\tan y = x$, then when $x = 1$, value of $4\frac{d^2y}{dx^2}$ is				
	(a) 2 (b) –	2 (c) 1	(d) – 1		
34.	lf a non-singular Matrix Δ sa	$\frac{1}{2} + \Delta - I = O + B$	$hen A^{-1} =$		
		$\frac{1}{1} = 0, $		1	
	(a) 2A – I (b) 2A +	I (c) 4A + 2I	(d) 2A – 4I		
35.	The maximum value of the f	Function $f(x) = 4.sin x.co$	os x is		
	(a) 2 (b) 4	(c) 1	(d) 8	1	

36.	If the objective function $z = ax + y$ is minimum at (1, 4) and its					
	minimum value is 13, then value of a is					
	(a) 1 (b) 4 (c) 9 (d) 13					
37.	Let L be the set of all lines in a plane. A relation R in L is given by					
	R = {(L_1, L_2): L_1 and L_2 intersect at exactly one point, $L_1, L_2 \in L$ }, then	1				
	(a) Reflexive (b) Symmetric (c) Transitive (d) Equivalence					
38.	If $f: X \rightarrow Y$ is defined, then f is	1				
	X Y	1				
	$1 \longrightarrow a$					
	$2 \longrightarrow b$					
	$3 \xrightarrow{} c$ $4 \xrightarrow{} d$					
	(a) Bijective function					
	(b) Many-one and onto					
	(c) Many-one and Into function					
39.	(d) One-one but not onto The feasible region for an LPP is always a polygon					
	polygon	1				
	(a) Convex					
	(b) Concave					
	(d) neither (a) nor (b)					
40.	The tangent to the curve $y = e^x$ at the point (0, 1) meets x-axis at	_				
	(a) (1, 0) (b) (-1, 0) (c) (0, 0) (d) (2, 0)	1				
	(a) (1, 0) (0) (-1, 0) (C) (0, 0) (a) (2, 0) SECTION – C					
In this section, attempt any 8 questions out of Questions 41 – 50.						
Each question is of 1 mark weightage.						
Each MCQ has four options with only one correct option, choose the correct						
	option.					
	Questions 46-50 are based on a Case-Study					
	Questions to so are based on a case-study					

I						
41.	41. The feasible region, for the inequalities $x + 2y \le 6$, $y \ge 0$, $0 \le x$ lies					
	in				1	
	(a) First (Quadra	nt			
	(b) Seco	nd Qua	drant			
	(c) Third	Quadra	ant			
	(d) Fourt	th Quad	lrant			
42.	Which of th	he follo	wing function is	decreasing on (0,	$\frac{\pi}{2}$)	1
	(a) sin x		(b) cos x	(c) tan x	(d) sin 2x	
43.	If the funct	ion f(x)	$= \sin x - ax + b$, is decreasing on	x ε R, then a	
	belongs to					1
	(a) (1, ∞	o)	(b) [0, ∞)	(c) (0, ∞)	(d) [1, ∞)	
44.	In a linear	progran	nming problem,	, If the feasible reg	jion is	
	bounded then objective function $Z = px + qy$ has					1
	(a) Maximum value only					
	(b) Minimum value only					
	(c) Maximum and minimum value both					
	(d) Neither maximum nor minimum value					
45.	$\int 6x$	8]				
	$\left \begin{array}{c} \text{If } A = \\ \end{array} \right 3$	$2 \int is s$	ingular matrix, [.]	then the value of :	k is	1
	(a) 3		(b) – 2	(c) 0	(d) 2	
			CASE	אחוודא		

ASE SIUDI

The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at speed 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

Based on the given information, answer the following questions.

46.	Given that the fuel cost per hour is k times the square of the				
	speed the train generates in km/h , the value of $16k$ is:				1
	(a) 1 (b)	2 (c) 3	(d) 4	
47.	If the train has travelled	a distance of 10	00 km, then t	ne total cost	
	of running the train is g	iven by function:			1
	375 60000	-			
	$(u) \frac{1}{4}v + \frac{1}{v}$				
	$(b)\frac{375}{8}v + \frac{60000}{v}$				
	$(c)\frac{375}{2}v + \frac{60000}{v}$				
	$(d)\frac{375}{2}v + \frac{1200000}{v}$				
48.	The most economical sp	peed to run the t	rain (in Km/hr) is:	
	(a) 50	(b) 80	(c) 400	(d) 800	1
49.	The fuel cost (In Rs.)for	the train to trave	el 1000km at t	he most	
	economical speed is:				1
	(a) 15000	(b) 75000	(c) 100000	(d) 150000	
50.	The total cost of the trai	in to travel 1000	km at the mos	st	
	economical speed is:				1
	(a) 15000	(b) 30000	(c) 100000	(d) 150000	