Practice paper term 1

Class xii

Marking Scheme

Physics

Section A		
Q. No.	Correct option	Hint/main points
1	a	Decreases K times
2	d	no work is done
3	a	$25 \times 10^{-2} \mathrm{~J}$ Hint: $\begin{aligned} \mathrm{U} & =(1 / 2) \mathrm{CV}^{2} \\ & =(1 / 2)\left(50 \times 10^{-6}\right) \times 100 \times 100 \\ & =25 \times 10^{-2} \mathrm{~J} \end{aligned}$
4	c	1:1 Hint: $\begin{aligned} \mathrm{B}_{\mathbf{A}} & =\mu_{0} \mathrm{I} / 2 \mathrm{R} \text { and } \\ \mathrm{B}_{\mathbf{B}} & =\mu_{0}(2 I) / 2(2 \mathrm{R}) \\ & =\mu_{0} \mathrm{I} / 2 \mathrm{R} \end{aligned}$ Therefore $\mathrm{B}_{\mathbf{A}} / \mathrm{B}_{\mathbf{B}}=1: 1$
5	b	Very weak temperature dependent resistivity
6	a	$3.1 \times 10^{-4} \mathrm{~T}$ Hint: $\begin{aligned} & \mathrm{B}=\mu_{0} \mathrm{NI} / 2 \mathrm{r}=4 \pi \times 10^{-7} \times 100 \times \\ & 0.40 /(2 \times 0.08)=3.1 \times 10^{-4} \mathrm{~T} \end{aligned}$
7	a	$\tan ^{-1} 1.7272$ Hint: $\begin{aligned} & \tan \varepsilon=\mathrm{Bv} / \mathrm{BH}=0.38 / 0.22 \\ & =1.7272 ; \varepsilon=\tan ^{-1} 1.7272 \end{aligned}$
8	a	Scalar Quantity
9	a	Gauss's law

10	c	$1.6 \times 10^{-19} \mathrm{C}$
11	d	$\mathrm{E}_{\text {axial }}=1 / 4 \pi \varepsilon_{0}\left(2 \mathrm{p} / \mathrm{r}^{3}\right)$
12	d	All of the above
13	a	Parallel planes perpendicular to the direction of electric field.
14	c	$\mathrm{Q} \propto \mathrm{V}$
15	b	The magnetic field lines of a magnet do not form continuous closed loops.
16	a	$\mathrm{m}=$ NIA
17	d	$\mathrm{e}=-\mathrm{d} \varnothing / \mathrm{dt}$
18	b	(i) bcdab ; (ii) bacb
19	d	$6.28 \times 10^{-5} \mathrm{~V}$ Solution: $\begin{aligned} & \mathrm{e}=\mathrm{Bvl}=\mathrm{B}(1 / 2 \mathrm{rw}) \mathrm{l}=\mathrm{B} 1 / 2 \mathrm{r}(2 \pi \mathrm{f}) 1 \\ &=0.4 \times 10^{-4} \times 0.5 \mathrm{x} \\ &(22 / 7) \mathrm{x}(2 \mathrm{rps}) \times 0.5 \\ &=6.28 \times 10^{-5} \mathrm{volts} \end{aligned}$ here $\mathrm{v}=\mathrm{av}$. linear velocity $=1 / 2$ (velocity at rim+ velocity at axil) $\begin{aligned} & =1 / 2(\mathrm{rw}+0) \\ & =1 / 2 \mathrm{rw} \end{aligned}$
20	a	Alternating voltage
21	a	Current I lags behind the voltage by $\pi / 2$
22	c	$\mathrm{LdI} / \mathrm{dt}+\mathrm{IR}+\mathrm{q} / \mathrm{C}=\mathrm{V}$
23	d	Relates with L-C-R circuit.

24	b	$\mathrm{I}_{\text {rms }}=\mathrm{I}_{\mathrm{m}} / \sqrt{ }$ 2
25	a	Transformer
		Section B
26	c	$6 \times 10^{-3} \mathrm{~N}$ Hint:Use formula $\mathrm{F}=\mathrm{k} \mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$
27	b	$+1.6 \mathrm{C}$ Hint: use q=ne
28	a	Increases
29	a	$4 \mu \mathrm{~F}$ Hint: As circuit is satisfying Wheatstone bridge condition $\begin{gathered} \mathrm{C} \mathrm{AC}= \\ (4 \mathrm{x} 4) /(4+4) /(4+4)+ \\ =2+2=4 \mu \mathrm{~F} \end{gathered}$
30	a	Decreases Explanation: The net field between the plates decreases as an electric field is induced in the opposite direction of the applied field.
31	c	$\begin{aligned} & 4 \times 10^{3} \mathrm{~V} / \mathrm{m} \\ & \mathrm{E}=\mathrm{V} / \mathrm{d}=12 / 3 \times 10^{-3}=4 \times 10^{3} \mathrm{v} / \mathrm{m} \end{aligned}$

32	b	$\begin{aligned} & 30 \mathrm{~A} \\ & \operatorname{Imax}=\mathrm{E} / \mathrm{r}+\mathrm{R}=12 / 0 \cdot 4+0=30 \mathrm{~A} \\ & \text { here } \mathrm{R}=0 \text { for max. Current } \end{aligned}$
33	d	$2.25 \mathrm{~V}$ Hint: Use $\mathrm{E}_{2} / \mathrm{E}_{1}=\mathrm{l}_{2} / \mathrm{l}_{1}$
34	b	gets doubled Hint; Use Drift velovity formula $\mathrm{Vd}=\mathrm{eET} / \mathrm{m}$
35	a	(i) CD ; (ii) AB
36	c	resistance of 60 watt bulb is greater than resistance of 100 watt bulb Hint: Use $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$
37	c	Both a and b
38	a	$\mathrm{R}_{\mathrm{A}}<\mathrm{Rg}_{\mathrm{g}}<\mathrm{R}_{\mathrm{V}}$
39	d	0.96 Nm
40	b	Clockwise
41	a	Maximum in situation (i)
42	c	Four times

		Hint; L=uo n^{2} A I; L $\propto \mathrm{n}^{2}$
43	d	Pure resistor
44	d	Energy
45	d	A is false and R is also false Explanation: A stationary charge produces only an electric field .A moving charge is associated both with electric and magnetic field
46	Both A and R are true and R is the correct explanation of A. Explanation: A stationary charge produces only an electric field .A moving charge is associated both with electric and magnetic field.	
47	a	a
48	a Both A and R are true and R is	
the correct explanation of A.		

50	d	Zero
51	d	$2 \mathrm{mC} ;$ hint: torque $=\mathrm{P} \mathrm{E} \mathrm{\sin 30}^{\circ}$ $4=\mathrm{q} \mathrm{x} \mathrm{2a} \mathrm{E} \sin 30^{\circ}$ $\mathrm{q}=2 \mathrm{~m} \mathrm{C}$
52	a	Zero
53	d	Unknown resistance
54	c	Meter bridge
55	d	Galvanometer

