Practice paper term 1

Class xii

Marking Scheme

Physics

Section A		
Q. No.	Correct option	Hint/main points
1	а	Decreases K times
2	d	no work is done
3	a	25 x 10 ⁻² J Hint: $U = (1/2)CV^2$ $= (1/2)(50 \times 10^{-6})x100x100$ $= 25x10^{-2} J$
4	С	1:1 Hint: $B_{A} = \mu_{0} / 2R$ and $B_{B} = \mu_{0} (2I) / 2 (2R)$ $= \mu_{0} / 2R$ Therefore $B_{A} / B_{B} = 1:1$
5	b	Very weak temperature dependent resistivity
6	a	3.1 x 10 ⁻⁴ T Hint: B= μ_0 NI/2r = 4π x 10 ⁻⁷ x 100 x 0.40/(2 x 0.08) = 3.1 x 10 ⁻⁴ T
7	a	tan ⁻¹ 1.7272 Hint: tan ε =Bv/B _H = 0.38/0.22 =1.7272; ε =tan ⁻¹ 1.7272
8	а	Scalar Quantity
9	а	Gauss's law

10	С	1.6 х 10- 19 С
11	d	$E_{axial} = 1/4\pi\epsilon_0 (2p/r^3)$
12	d	All of the above
13	а	Parallel planes perpendicular to the direction of electric field.
14	С	$Q \propto V$
15	b	The magnetic field lines of a magnet do not form continuous closed loops.
16	а	m = NIA
17	d	$e = -d\phi/dt$
18	b	(i) b c d a b ; (ii) b a c b
19	d	6.28 x 10 ⁻⁵ V Solution: $e = Bvl = B(1/2rw)l = B \frac{1}{2} r (2 \pi f)l$ $= 0.4x10^{-4}x 0.5 x$ (22/7)x(2rps)x0.5 $= 6.28 x10^{-5} volts$ here v = av. linear velocity = $\frac{1}{2}$ (velocity at rim+ velocity at axil) $= \frac{1}{2} (rw+0)$ = 1/2 r w
20	а	Alternating voltage
21	а	Current I lags behind the voltage by $\pi/2$
22	с	L dI/dt + IR + q/C = V
23	d	Relates with L-C-R circuit.

24	b	$I_{rms} = I_m / \sqrt{2}$
25	а	Transformer
		Section B
26	с	6 x 10-3 N
		Hint:Use formula $F = k q_1 q_2 / r^2$
27	b	+1.6 C
		Hint: use q=ne
28	а	Increases
29	a	4 μ F Hint: As circuit is satisfying Wheatstone bridge condition C AC = $(4x4)/(4+4) + (4x4)/(4+4)$ =2 + 2 = 4 μ F
30	a	Decreases Explanation: The net field between the plates decreases as an electric field is induced in the opposite direction of the applied field.
31	C	4 x 10 ³ V/m E =V/d =12/3x 10 ⁻³ = 4 x 10 ³ v/m

32	b	30 A Imax = E/r+R = 12/0.4+0= 30 A here R=0 for max. Current
33	d	2.25 V Hint: Use E ₂ /E ₁ = l ₂ /l ₁
34	b	gets doubled Hint; Use Drift velovity formula Vd=eET/m
35	а	(i) CD; (ii) AB
36	C	resistance of 60 watt bulb is greater than resistance of 100 watt bulb Hint: Use P= V ² /R
37	с	Both a and b
38	а	$R_A < R_g < R_v$
39	d	0.96 Nm
40	b	Clockwise
41	а	Maximum in situation (i)
42	с	Four times

		Hint; L= $\mu o n^2 A I$; L $\propto n^2$
43	d	Pure resistor
44	d	Energy
45	d	A is false and R is also false
		Explanation: A stationary charge produces only an electric field .A moving charge is associated both with electric and magnetic field
46	a	Both A and R are true and R is
		the correct explanation of A.
		Explanation: A stationary charge produces only an electric field .A moving charge is associated both with electric and magnetic field.
47	а	Both A and R are true and R is
		the correct explanation of A.
48	a	Both A and R are true and R is
		the correct explanation of A.
		Explanation: Repulsion between opposite pairs increase area enclosed by the irregular loop.
49	а	Both A and R are true and R is
		the correct explanation of A. hint: As T= $2\pi m/qB$
		merelore r « m/ q

50	d	Zero
51	d	2mC; hint: torque =P E sin 30 ⁰ 4 =q x 2a E sin 30 ⁰ q = 2 m C
52	а	Zero
53	d	Unknown resistance
54	С	Meter bridge
55	d	Galvanometer