Directorate of Education, GNCT of Delhi
 Solution of Practice Paper
 Term -II (2021-22)
 Class - XII
 Mathematics (Code: 041)

Q. No.	VALUE POINTS
	SECTION - A
1	Let $\mathrm{I}=\int\left(\frac{1+x}{1+x^{2}}\right) d x=\int\left(\frac{1}{1+x^{2}}\right) d x+\int\left(\frac{x}{1+x^{2}}\right) d x$ $\int\left(\frac{x}{1+x^{2}}\right) d x=\tan ^{-1} x[\text { formula }]$ to evaluate $\int\left(\frac{x}{1+x^{2}}\right) d x$ put $1+x^{2}=$ t on differentiating both sides we get $2 \mathrm{xdx}=\mathrm{dt}$ or $\mathrm{xdx}=\frac{1}{2} d t$ $\begin{aligned} & \left.\int\left(\frac{x}{1+x^{2}}\right) d x=\int\left(\frac{1}{2} \frac{d t}{t}\right)=\frac{1}{2} \log \|t\|=\frac{1}{2} \log \right\rvert\, 1+x^{2} \\ & =\frac{1}{2} \log 1+x^{2} \end{aligned}$ Putting these values in equation(1)we have $\mathrm{I}=\tan ^{-1} x^{+} \frac{1}{2} \log 1+x^{2}+\mathrm{c}$ OR $\begin{aligned} & \text { SOL- } \left.\int\left(\frac{3 x-6+6-1}{(x-2)^{2}}\right) d x=\int\left(\frac{3(x-2)+5}{(x-2)^{2}}\right) d x=3 \log \|\mathrm{x}-2\| \right\rvert\,+5 \int(x-2)^{-2} d x \\ & =3 \log \|\mathrm{x}-2\|+5 \frac{(x-2)^{-1}}{-1}+\mathrm{c}=3 \log \|\mathrm{x}-2\|-\frac{5}{x-2}+\mathrm{c} \end{aligned}$
2	Given differential equation is $\begin{aligned} & \frac{d}{d x}\left\{\left(\frac{d y}{d x}\right)^{3}\right\}=0 \\ & \Rightarrow 3\left(\frac{d y}{d x}\right)^{3-1} \frac{d}{d x}\left(\frac{d y}{d x}\right)=0 \\ & \Rightarrow 3\left(\frac{d y}{d x}\right)^{2} \frac{d^{2} y}{d x^{2}}=0 \end{aligned}$

clearly the highest order derivative occurring in the differential equation is $\frac{d^{2} y}{d x^{2}}$ so its order is 2. Also it is a polynomial equation in derivative and the highest power raised to is $\frac{d^{2} y}{d x^{2}}$ one so its degree is one. Hence the sum of the order and degree of the above given differential equation is $2+1=3$

Sol-Let \hat{a} and \hat{b} be unit vectors such that $\hat{a}+\hat{b}$ is also a unit vector
$|\hat{a}|=|\hat{b}|=|\hat{a}+\hat{b}|$ \qquad
we know that $|\hat{a}+\hat{b}|^{2}=(\hat{a}+\hat{b})^{2}=(\hat{a})^{2}+(\hat{b})^{2}+2 \hat{a} \hat{b}$
$|\hat{a}-\hat{b}|^{2}=(\hat{a}-\hat{b})^{2}=-(\hat{a})^{2}+(\hat{b})^{2}-2 \hat{a} \hat{b}$
adding equations (2) and (3) we have
$|\hat{a}+\hat{b}|^{2}+|\hat{a}-\hat{b}|^{2}=2(\hat{a})^{2}+2(\hat{b})^{2}=|\hat{a}|^{2}+2|\hat{b}|^{2}$
putting the values of $|\hat{a}||\hat{b}||\hat{a}+\hat{b}|$ (each=1)
$1^{2}+|\hat{a}-\hat{b}|^{2}=2|\hat{a}|^{2}+2|\hat{b}|^{2}=2(1)+2(1)$
$|\hat{a}-\hat{b}|^{2}=3=>|\hat{a}-\hat{b}|=\sqrt{3}$
$8-4$
$4 \quad \frac{8}{\sqrt{89}}, \frac{-4}{\sqrt{89}}, \frac{3}{\sqrt{89}}$
5

Sol-

Three balls are drawn one by one without replacement from a bag containing 5 whit and 4 green balls
Let X denote number of green balls (out of three green balls drawn)
$\Rightarrow X=0,1,2$ and 3 only(and not upto 4 , the number of green balls in the bag
$P(X=0)=$ Probability of getting green no green balls in the three draws i.e., all the three white balls $=\mathrm{P}(\mathrm{WWW})=\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}=\frac{60}{504}=\frac{5}{42}$
$\mathrm{P}(\mathrm{X}=1)=$ Probability of getting one green balls (and hence two white balls) in three draws
$=\mathrm{P}(\mathrm{GWW})+\mathrm{P}(\mathrm{WGW})+\mathrm{P}(\mathrm{WWG})=\frac{4}{9} \times \frac{5}{8} \times \frac{4}{7}+\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7}+\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7}$
$=\frac{240}{504}=\frac{20}{42}$
similarly $\mathrm{P}(\mathrm{X}=2)=$ Probability of getting two green balls (and hence one white ball) in three draws $=\frac{15}{42}$
and similarly $\mathrm{P}(\mathrm{X}=3)=$ Probability of getting all the three green balls $=$
$\mathrm{P}(\mathrm{GGG})=\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}=\frac{2}{42}$
Hence probability distribution of X is

X	0	1	2	3
$P(X)$	$\frac{5}{42}$	$\frac{20}{42}$	$\frac{15}{42}$	$\frac{15}{42}$

6 Solution- There are 26 red cards and 26 black cards in a pack of 52 playing cards .
Let R and B denote the event of drawing red card and black card respectively
Now required probability $=\mathrm{P}$ (first card is red and second one is black) +P (first card is black and second one is red)
$=\mathrm{P}(\mathrm{R})+P\left(\frac{B}{R}\right)+\mathrm{P}(\mathrm{B}) P\left(\frac{R}{B}\right)$
$=\frac{26}{52} \mathrm{x} \frac{26}{51}+\frac{26}{52} \mathrm{x} \frac{26}{51}$
$=\frac{26}{51}$
$7 \quad$ Let $\mathrm{I}=\int\left(\frac{d x}{1+x+x^{2}+x^{3}}\right)=\int\left(\frac{d x}{(1+x)+x^{2}(1+x)}\right)=\int\left(\frac{d x}{(1+x)\left(1+x^{2}\right)}\right)$
$\operatorname{let}\left(\frac{d x}{(1+x)\left(1+x^{2}\right)}\right)=\frac{A}{1+X}+\frac{B X+C}{1+x^{2}}$
Multiply both sides by L.C.M $(1+x)\left(1+x^{2}\right)$ we get
$1=\mathrm{A}\left(1+x^{2}\right)+(\mathrm{BX}+\mathrm{C})(1+x)$
OR $1=\mathrm{A}+\mathrm{A} x^{2}+\mathrm{Bx}+\mathrm{B} x^{2}+\mathrm{C}+\mathrm{Cx}$
Equating coefficients of x^{2}, x and constant term, we get
$\mathrm{A}+\mathrm{B}=0$
$\mathrm{B}+\mathrm{C}=0$
Putting values
$\mathrm{A}+\mathrm{C}=1$
Solving A, B, C we get $A=\frac{1}{2}, C=\frac{1}{2}, B=-A=\frac{-1}{2}$
Putting values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in (1) we get
$\left(\frac{1}{(1+x)\left(1+x^{2}\right)}\right)=\frac{\frac{1}{2}}{1+X}+\frac{\left(\frac{-1}{2} x+\frac{1}{2}\right)}{1+X^{2}}$
$=\frac{1}{2} \frac{1}{1+X}-\frac{1}{2} \frac{x}{1+x^{2}}+\frac{1}{2} \frac{1}{1+x^{2}}$
Hence $\mathrm{I}=\frac{1}{2} \log |(1+x)|-\frac{1}{4} \log \left(1+x^{2}\right)+\frac{1}{2} \tan ^{-1} x^{+}+\mathrm{c}$

The given differential equation is
$x d y-\mathrm{ydx}=\sqrt{x^{2}+y^{2}} \mathrm{dx}$
dividing by dx
$\mathrm{x} \frac{d y}{d x}-\mathrm{y}=$
$\Rightarrow>\mathrm{x} \frac{d y}{d x}=\mathrm{y}+\sqrt{x^{2}+y^{2}}=>\frac{d y}{d x}-\frac{y}{x}=\frac{\sqrt{x^{2}+y^{2}}}{x}$
Put $\mathrm{y}=\mathrm{vx}=>\frac{d y}{d x}=\mathrm{v}+\mathrm{x} \frac{d v}{d x}$
Therefore
$\mathrm{v}+\mathrm{x} \frac{d v}{d x}-\frac{v x}{x}=\frac{\sqrt{x^{2}+v^{2} x^{2}}}{x} \Rightarrow>\mathrm{v}+\mathrm{x} \frac{d v}{d x}-\mathrm{v}=\sqrt{1+v^{2}}$
$\Rightarrow \int\left(\frac{d v}{\sqrt{1+v^{2}}}\right)=\int\left(\frac{d x}{x}\right)=>\log \quad\left|v+\sqrt{1+v^{2}}\right|=\log |\mathbf{x}|+\log |\mathbf{c}|=>\log \log \left|\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right|=\log |C x|=>\frac{y}{x}+\sqrt{\left(\frac{x^{2}+y^{2} x^{2}}{x^{2}}\right)}$
$=\mathrm{Cx}=\mathrm{y}+\sqrt{x^{2}+y^{2}}=\mathrm{Cx}{ }^{2}$
OR

The given differential equation is
$\frac{d Y}{d x}-3 y \cot \mathrm{x}=\sin 2 \mathrm{x}$ given that $\mathrm{y}=2$ when $\mathrm{x}=\frac{\pi}{2}$
Compairing with $\frac{d Y}{d x}+\mathrm{Py}=\mathrm{Q}$ we have $\mathrm{P}=3 \operatorname{cotx}$ and $\mathrm{Q}=\sin 2 \mathrm{x}$
$\int P d x$
$=-3 \int \cot x d x=-3 \log \sin x=\log (\sin x)^{-3}$
$\mathrm{IF}=\int e^{p d x}=e^{\log (\sin x)^{-3}}=(\sin x)^{-3}=\frac{1}{\sin ^{3} x}$
The general solution is $\mathrm{y}(\mathrm{IF})=.\int Q(I F) \mathrm{dx}+\mathrm{C}$
or $y \frac{1}{\sin ^{3} x}=\int \sin 2 x \frac{1}{\sin ^{3} x} d x+C$
$\frac{y}{\sin ^{3} x}=\int \frac{(2 \sin x \cos x)}{\sin ^{3} x} d x+C$
$=2 \int \frac{\cos x}{\sin ^{2} x} \mathrm{dx}+\mathrm{C}=2 \int \frac{\cos x}{\sin x \cos x} \mathrm{dx}+\mathrm{C}=\int 2 \operatorname{cosec} x \cot x \mathrm{dx}=-2 \operatorname{cosec} \mathrm{x}+\mathrm{C}$
or
$\frac{y}{\sin ^{3} x}=\frac{-2}{\sin x}+\mathrm{C}$
$y=\sin ^{3} x$
multiplying every term by $\mathrm{LCM}=\sin ^{3} x$
$y=-2 \sin ^{2} x+\operatorname{csin}^{3} x$ To find C putting $y=2$ when $x=\frac{\pi}{2}$ (given in (1)
$2=-2 \sin ^{2} \frac{\pi}{2}+\operatorname{csin}^{3} \frac{\pi}{2}$
or $2=-2+\mathrm{c}$ or $\mathrm{c}=4$ puttung $\mathrm{c}=4$ the required particular solution is
$y=-2 \sin ^{2} x+4 \sin ^{3} x$
$\vec{a} \times \vec{b}=\vec{c}=>\vec{c} \perp \vec{a}$ and $\vec{c} \perp \vec{b}$
(By def of cross product) \qquad
similarly $\vec{b} \times \vec{c}=\vec{a}=>\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$
from (1) and (2) we have $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles.
Now $\vec{a} \times \vec{b}=\vec{c}($ given $)=>|\vec{a} \times \vec{b}|=|\vec{c}|$
Using (2) $|\vec{a}||\vec{b}| \sin 90^{\circ}=|\vec{c}|$
$|\vec{a}||\vec{b}|=|\vec{c}|$
similarly $\vec{b} \times \vec{c}=\vec{a}=>|\vec{b} \times \vec{c}|=|\vec{a}|$
$\Rightarrow|\vec{b}||\vec{c}|=|\vec{a}|---(4)$
Dividing (3) by(4) (to eliminate $|\vec{b}|$) we have
$\frac{|\vec{a}|}{|\vec{c}|}=\frac{|\vec{c}|}{|\vec{a}|^{2}}=>|\vec{a}|^{2}=|\vec{c}|^{2}$ therefore $|\vec{a}|=|\vec{c}|$
dividing (3) by (5) $|\vec{b}|=1$ putting it in (4) we have
$|\vec{c}|=|\vec{a}|$
Solution-Here $\vec{b}_{1}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{b}_{2}=2 \hat{i}+4 \hat{j}-4 \hat{k}=2(\hat{i}+2 \hat{j}-2 \hat{k})$
$=2 \vec{b}_{1}$ Therefore , the lines are parallel now using the formula for distance between parallel lines $=$ $\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}\right|}{|\vec{b}|}$
Shortest distance is $2 \sqrt{ } 5$

OR

Sol-
Given point is $\vec{a}_{1}=(1,2,-4)=\hat{i}+2 \hat{j}-4 \hat{k}$ we know that vector along the line $\vec{r}=$ $\hat{i}+2 \hat{j}-4 \hat{k}=\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ is $\vec{b}_{1}=(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and a vector along the line $\vec{b}_{2}=(\hat{i}+\hat{j}-\hat{k})$ we know vector equation of the plane passing through point \vec{a} and parallel to the two given lines is (\vec{r} $\left.-\vec{a}_{1}\right) \cdot \vec{n}=0$
where $\vec{n}=\vec{b}_{1} \times \vec{b}_{2}$
now $\vec{n}=\vec{b}_{1} \times \vec{b}_{2}$

	$\begin{align*} & =\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 1 & 1 & -1 \end{array}\right\| \\ & =\hat{i}(-3-6)-\hat{j}(-2-6)+\hat{k}(2-3)=-9 \hat{i}+8 \hat{j}-\hat{k} \tag{2} \end{align*}$ from equation (1) $\vec{r} \cdot \vec{n}-\vec{a}_{1} \cdot \vec{n}=0=>\vec{r} \cdot \vec{n}=\vec{a}_{1} \cdot \vec{n}$ putting values of \vec{a}_{1} and \vec{n} in (2) equatoin of required plane is i.e., $\vec{r} .(-9 \hat{i}+8 \hat{j}-\hat{k})=(\hat{i}+2 \hat{j}-4 \hat{k}) \cdot(-9 \hat{i}+8 \hat{j}-\hat{k})=-9+16+4$ or $\vec{r} \cdot(-9 \hat{i}+8 \hat{j}-\hat{k})=11$ (Vector form of the plane) or $(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(-9 \hat{i}+8 \hat{j}-\hat{k})=11$ or $9 x+8 y-z=11$ or $9 x+8 y-z-11=0$ (Cartesian form of the plane)
	SECTION - C
11	Let $\mathrm{I}=\int_{-1}^{2}\left\|x^{3}-x\right\| d x$ Again let $\mathrm{f}(\mathrm{x})=x^{3}-x=\mathrm{x}\left(x^{2}-1\right)=x(x-1)(x+1)$ Now break the limit at $\mathrm{x}=0,1$ (because on putting $\mathrm{f}(\mathrm{x})=0$ we get $\mathrm{x}=0,1,-1$) It is clear that $x^{3}-x \geqslant 0$ on $[-1,0]$ $\begin{aligned} & x^{3}-x \leqslant 0 \text { on }[0,1] \\ & x^{3}-x \geqslant 0 \text { on }[1,2] \end{aligned}$ Hence the interval of the integral can be subdivided as $\begin{aligned} & \int_{-1}^{2}\left\|x^{3}-x\right\| d x=\int_{-1}^{0}\left(x^{3}-x\right) d x-\int_{0}^{1}\left(x^{3}-x\right) d x+\int_{1}^{2}\left(x^{3}-x\right) d x \\ & ==\int_{-1}^{0}\left(x^{3}-x\right) d x+\int_{0}^{1}\left(x-x^{3}\right) d x+\int_{1}^{2}\left(x^{3}-x\right) d x=\frac{11}{4} \end{aligned}$

Given equation of the circle is $x^{2}+y^{2}=16$ and $\sqrt{3} y=\mathrm{x}$, represents a line through origin.
The line $y=\frac{1}{\sqrt{3}} x$ intersect the circle .
Therefore $x^{2}+\frac{x^{2}}{3}=16$
$\frac{3 x^{2}+x^{2}}{3}=16=>4 x^{2}=48$

$\Rightarrow x^{2}=12 \Rightarrow x= \pm 2 \sqrt{3}$
When $\mathrm{x}=2 \sqrt{3}$ then $\mathrm{y}=\frac{2 \sqrt{3}}{\sqrt{3}}=2$
Required area shaded in first quadrant $=\left(\right.$ Area under the line $y=\frac{1}{\sqrt{3}} x$ from $x=0$ to $\left.2 \sqrt{3}\right)+$ (Area under the circle from $x=2 \sqrt{3}$ to $x=4$
$=\int_{0}^{2 \sqrt{3}} \frac{1}{\sqrt{3}} x d x+\int_{2 \sqrt{3}}^{4} \sqrt{16-x^{2}} d x$
after solving it we get required area $=\frac{4 \pi}{3}$ sq units

Required area (shaded)

= Area under curve $y=x^{3}$ with respect to ' x ' axis from $x=-2$ to $x=1$
$=\int_{-21}^{1}\left|x^{3}\right| d x=\left|\int_{2}^{0}\right| x^{3}|d x|+\int_{0}^{1}\left|x^{3}\right| d x$
$=\left|\int_{-2}^{0}-x^{3} d x\right|+\int_{0}^{1} x^{3} d x$
As cube a value below 0 is negative
$\left.\left.=\frac{-x^{4}}{4}\right]_{-2}^{0}+\frac{x^{4}}{4}\right]_{0}^{1}=-\left[0-\frac{(-2)^{4}}{4}\right]+\left[\frac{1}{4}-\frac{0}{4}\right]$
$=-\left[\frac{-16}{4}\right]+\frac{1}{4}=\frac{16}{4}+\frac{1}{4}=\frac{17}{4}$ sq.units
We know that d.r.'s of the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ are is denominators $2,3,-6$
therefore d.r.'s of any line parallel to it are also $2,3,-6$ therefore equation of the line through P $(1,-2,3)$ and parallel to the given line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ are
$\frac{x}{2}=\frac{y}{3}=\frac{z}{-6} \quad \frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{-6}(=\lambda)$
let this line meet the given plane $x-y+z=5$ in the point Q say) from equation (1) $x-1=2 \lambda y+2=3$
$\lambda, z-3=-6 \lambda=>x=2 \lambda+1, y=3 \lambda-2$
$\mathrm{z}=-6 \lambda+3$
therefore point Q is $\mathrm{Q}(2 \lambda+1,3 \lambda-2,-6 \lambda+3)$ for some real λ
But this point Q lies on the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$ therefore
$(2 \lambda+1)-(3 \lambda-2)(-6 \lambda+3)=$
$2 \lambda+1-3 \lambda+2-6 \lambda+3=5 \Rightarrow-7 \lambda=-1 \Rightarrow \lambda=\frac{1}{7} \quad \frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$
putting $\lambda=\frac{1}{7}$ in (3) coordinates of point Q are ($\frac{9}{7}, \frac{-11}{7} \frac{15}{7}$)
Required distance is PQ

$$
\begin{aligned}
& \sqrt{\left(\frac{9}{7}-1\right)^{2}+\left(\frac{-11}{7}+2\right)^{2}+\left(\frac{15}{7}-3\right)^{2}}=\mathbf{1} \\
& \sqrt{\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}+\left(\frac{-6}{7}\right)^{2}}
\end{aligned}
$$

	$\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=\sqrt{\frac{49}{49}}=\mathbf{1}$
$\mathbf{1 4}$	(a) 0.92.
	(b) 0.083

