Directorate of Education, GNCT of Delhi
 Marking Scheme of Practice Paper - II
 Class - IX
 Mathematics (Code: 041)

Maximum Marks: 40
Time Duration: 90 minutes

Q. No.	Correct option	Hint/ Solution
1.	(b)	In between two rational numbers there are Infinitely many rational numbers.
2.	(d)	$x^{\frac{2}{4}} \times x^{\frac{6}{4}}=x^{\frac{2}{4}+\frac{6}{4}}=x^{\frac{8}{4}}=x^{2}$
3.	(a)	If $\mathrm{x}=\mathrm{a}$, then $\mathrm{y}=3 \mathrm{a}$. Therefore, required point is $(a, 3 a)$.
4.	(c)	(abscissa of P) - (abscissa of Q$)=2-(-6)=2+6=8$
5.	(c)	In third quadrant, both the coordinates of a point are negative.
6.	(d)	Parallel lines cannot intersect each other.
7.	(c)	$0.4014001400014 \ldots .$. is non terminating and non-recurring decimal number.
8.	(d)	Two angles whose sum is equal to 180° are called Supplementary angle.
9.	(c)	Infinitely many of linear equations may be satisfied by $\mathrm{x}=1$ and $\mathrm{y}=2$.
10.	(c)	$\Delta \mathrm{CAB} \cong \triangle \mathrm{RQP}$
11.	(c)	$s=\frac{20+15+9}{2}=22 \mathrm{~cm}$
12.	(c)	$\begin{aligned} & \mathrm{s}=\frac{13+13+24}{2}=25 \mathrm{~cm} \\ & \mathrm{~A}=\sqrt{25(25-13)(25-13)(25-24)}=60 \mathrm{~cm}^{2} \end{aligned}$
13.	(b)	$\begin{aligned} & \mathrm{AB}=\mathrm{AC} \Rightarrow \angle \mathrm{C}=\angle \mathrm{B} \\ & \therefore \angle \mathrm{C}=50^{\circ} \end{aligned}$
14.	(b)	Let supplementary angles be x and $\mathrm{x}-40^{\circ}$. A.T.Q. $\begin{aligned} & x+\left(x-40^{0}\right)=180^{0} \\ & x=110^{0} \end{aligned}$ so, angles are 110° and 70°.
15.	(c)	$10-15,15-20,20-25,25-30,30-35$ So, lower class-limit of the highest class is 30 .
16.	(b)	$\begin{aligned} & \mathrm{s}=54 \mathrm{~cm} \\ & \mathrm{~A}=\sqrt{54(54-51)(54-37)(54-20)} \\ & =306 \mathrm{~cm}^{2} \\ & \text { Cost of levelling }=306 \times 3=₹ 918 \end{aligned}$
17.	(c)	If one angle of a linear pair is acute then the other angle will be obtuse angle.
18.	(a)	$\begin{aligned} & \angle \mathrm{R}=\angle \mathrm{P} \Rightarrow \mathrm{PQ}=\mathrm{QR} \\ & \therefore \mathrm{PQ}=4 \mathrm{~cm} \end{aligned}$
19.	(d)	If the sides of a triangle are doubled, then its area becomes four times.
20.	(a)	There is no data in class $370-390$, so frequency of $370-390$ is 0 .
21.	(d)	The point which lies on y -axis at a distance of 10 units in the negative direction of y-axis is $(0,-10)$.
22.	(a)	$\begin{aligned} & 60^{\circ}+\mathrm{x}=180^{\circ} \text { (Linear Pair) } \\ & \therefore \mathrm{x}=120^{\circ} \\ & 120^{\circ}+\mathrm{y}=180^{\circ} \text { (Linear Pair) } \\ & \therefore \mathrm{y}=60^{\circ} \\ & \hline \end{aligned}$

23.	(c)	$x+y=0$ satisfied the solution (0,0).			
24.	(a)	$\begin{aligned} & 5 y^{0}+7 \mathrm{y}^{0}=180^{0} \text { (Linear Pair) } \\ & \mathrm{y}^{0}=15^{0} \\ & \mathrm{x}^{0}+3 \mathrm{y}^{0}=7 \mathrm{y}^{0} \text { (Exterior angle Property of a triangle) } \\ & \Rightarrow \mathrm{x}^{0}=4 \mathrm{y}^{0} \\ & \therefore \mathrm{x}=60 \end{aligned}$			
25.	(a)	$\begin{aligned} & 3 x+4 x+3 x=180^{0} \text { (Straight angle) } \\ & x=18^{0} \\ & \therefore 4 x=4 \times 18^{0}=72^{0} \end{aligned}$			
26.	(c)	$(0)+2 y=2 \Rightarrow y=1$ \therefore required point is $(0,1)$.			
27.	(b)	Coordinate axes intersect each other at right angle.			
28.	(a)	$\mathrm{A}=1 / 2 \mathrm{X} 12 \mathrm{X} 8=48 \mathrm{~cm}^{2}$			
29.	(d)	$0 . x+1 . y=5$			
30.	(b)	$\begin{aligned} & y+25^{0}=60^{0} \\ & \therefore y=35^{\circ} \end{aligned}$			
31.	(d)	The collection of information, collected for a purpose is called data.			
32.	(b)	If the altitudes from two vertices of a triangle to the opposite sides are equal, then the triangle is isosceles.			
33.	(b)	The graph of $x=5$ is a line parallel to y-axis at a distance 5 units from the origin.			
34.	(d)	Let sides of triangles be $3 x, 4 x$ and $5 x$. $\begin{aligned} & S=6 x \\ & \text { Area }=\sqrt{6 x(6 x-3 x)(6 x-4 x)(6 x-5 x)} \\ & 150=6 x^{2} \\ & \therefore x=5 \mathrm{~cm} \\ & \text { Perimeter }=12 \times 5=60 \mathrm{~cm} \end{aligned}$			
35.	(a)	$\begin{aligned} & \mathrm{E} \leftrightarrow \mathrm{P} \\ & \therefore \angle \mathrm{E}=\angle \mathrm{P} \end{aligned}$			
36.	(d)	By mid-point theorem, $\begin{aligned} & \mathrm{FE}=1 / 2 \mathrm{BC} \text { and } \mathrm{FE} \\| \mathrm{BC} \Rightarrow \mathrm{FE}=\mathrm{DC}=\mathrm{BD} \\ & \mathrm{DE}=1 / 2 \mathrm{AB} \text { and } \mathrm{DE} \\| \mathrm{AB} \Rightarrow \mathrm{DE}=\mathrm{AF}=\mathrm{BF} \\ & \mathrm{FD}=1 / 2 \mathrm{AC} \text { and } \mathrm{FD} \\| \mathrm{AC} \Rightarrow \mathrm{FD}=\mathrm{AE}=\mathrm{EC} \\ & \therefore \Delta \mathrm{DEF} \cong \Delta \mathrm{AFE} \cong \Delta \mathrm{BFD} \cong \Delta \mathrm{CDE} \end{aligned}$			
37.	(d)	Side of equilateral triangle is 20 m . $\text { Area }=\frac{\sqrt{3}}{4} X(20)^{2}=100 \sqrt{3} \mathrm{~m}^{2}$			

38.	(a)	Let the base of triangle be $x \mathrm{~cm}$. $S=\left(5+\frac{x}{2}\right) \mathrm{cm}$ A.T.Q. $\sqrt{\left(5+\frac{x}{2}\right)\left(\frac{x}{2}\right)\left(\frac{x}{2}\right)\left(5-\frac{x}{2}\right)}=12$ Squaring both sides, we have $\frac{x^{2}}{4}\left(25-\frac{x^{2}}{4}\right)=144$ Let $\frac{x^{2}}{4}=y$ $\therefore \mathrm{y}(25-\mathrm{y})=144$ Either $\mathrm{y}=16$ or $\mathrm{y}=9$ Either $x=8$ or $x=6$ So, base of triangle is 6 cm .
39.	(c)	The graph of $\mathrm{y}=7$ is a straight line parallel to x -axis.
40.	(b)	The perpendicular distance (in units) of the point (-7,2) from y-axis is 7 units.
41.	(b)	$\sqrt{10}$ is an irrational number.
42.	(d)	$4+5 \sqrt{36}=4+5 \times 6=34$
43.	(d)	$\frac{1}{\sqrt{3}}$ is an irrational number.
44.	(b)	For non-terminating recurring decimals, at least one of factors of denominator must be other than 2 and 5 .
45.	(a)	$(256)^{0.16} \times(256)^{0.09}=(256)^{0.16+0.09}=(256)^{0.25}=4$
46.	(b)	$\frac{1600}{500} \times 100=320 \%$
47.	(d)	$1600+1400+1300+1200+1100+1000+500=8100$
48.	(a)	Difference of number of people in age groups $50-60 \& 60-70$ is 500 . Difference of number of people in age groups $0-10 \& 10-20$ is 200. \therefore two consecutive age groups having maximum difference of number of people is $50-60 \& 60-70$.
49.	(b)	$1400+1000=2400$
50.	(a)	0-10, 10-20, 20-30 and 30-40 have more than 1100 healthy people.

