Directorate of Education, GNCT of Delhi

Solutions of Practice Paper

Class – IX Mathematics (Code: 041)

Term – II (2021 – 2022)

Time Duration: 2 hrs.

Maximum Marks: 40

Q. No.	Value point/Hints			
1	Volume of removed water = Length X width X decrease in water level			
	\Rightarrow 18 = 20 X width X 0.15			
	\therefore width = 6 metre			
	OR			
	SA of sphere = 616			
	$\Rightarrow 4 X \frac{22}{7} X r^2 = 616$			
	\therefore r = 7 cm			
	Volume of sphere = $\frac{4}{3} X \frac{22}{7} X (7)^3$			
	$= 1437\frac{1}{3}$ cm ³			
2	2(-3) + 5 = -6 + 5 = -1			
3	Slant height= $\sqrt{(7)^2 + (24)^2} = 25 \text{ cm}$			
	Area of sheet required for a cap = CSA of the cap = $\frac{22}{7}$ X 7 X 25 = 550 cm ²			
	Area of sheet required for 10 such cap = $10 \times 550 = 5500 \text{ cm}^2$			
4	Given: A parallelogram ABCD & BD is its C			
	diagonal.			
	To prove: $\triangle ABD \cong \triangle CDB$			
	Proof: In $\triangle ABD$ and $\triangle CDB$,			
	$AB = CD [: opp. sides of II^{gm}]$			
	DA = BC [: opp. sides of II^{gm}]			
	$BD = DB [Common] \qquad A \qquad B$			
	$\therefore \Delta ABD \cong \Delta CDB \text{ (SSS rule)}$			
	Hence Proved			
5	$\angle BDC = \angle BAC = 30^{\circ}$ (: angles in same segment)			
	$\angle DBC + \angle BDC + \angle BCD = 180^{\circ}$ (: Angle sum property of $\triangle BCD$)			
	$\Rightarrow 70^{\circ} + 30^{\circ} + \angle BCD = 180^{\circ}$			
	$\Rightarrow \angle BCD = 80^{\circ}$			
	OR Civer: AB and CD are two equal chards of a circle			
	Given: AB and CD are two equal chords of a circle (with centre O.			
	To Prove: $\angle AOB = \angle COD$			
	Construction: Join AO, BO, CO and DO.			

	Proof: In $\triangle AOB$ and $\triangle COD$				
	AO = CO [radii of the same circle]				
	BO = DO [radii of the same circle]				
	AB = CD [Given]				
	$\therefore \Delta AOB \cong \Delta COD \text{ (SSS rule)}$				
	So, $\angle AOB = \angle COD$ (c.p.c.t.)				
6	Hence Proved				
0	6 Given, Surface area of sphere = Surface area of cube $4\pi r^2 = 6a^2$				
	$\therefore \frac{\mathbf{r}}{a} = \sqrt{\frac{6}{4\pi}}$				
	$\frac{Volume \ of \ sphere}{Volume \ of \ cube} = \frac{\frac{4}{3}\pi r^3}{a^3} = \frac{4}{3}\pi \left(\frac{r}{a}\right)^3 = \frac{4}{3}\pi \left(\sqrt{\frac{6}{4\pi}}\right)^3 = \frac{4}{3}\pi X \frac{6}{4\pi} X \left(\sqrt{\frac{6}{4\pi}}\right) = \left(\sqrt{\frac{6}{\pi}}\right)$				
	Therefore, required ratio is $\sqrt{6}$: $\sqrt{\pi}$.				
7	$2t^2 - t - 10$				
	$= 2t^2 - 5t + 4t - 10$				
	= t(2t - 5) + 2(2t - 5)				
	=(2t-5)(t+2)				
8	ABCD is a rectangle. D R C				
	$\therefore AB = DC \& BC = AD$				
	$\Rightarrow \frac{1}{2} AB = \frac{1}{2} DC \& \frac{1}{2} BC = \frac{1}{2} AD$				
	$\begin{array}{c} 2 & 2 & 2 & 2 \\ \therefore \text{ AP} = \text{PB} = \text{DR} = \text{RC } \& \end{array} \qquad \qquad$				
	BQ = QC = DS = AS				
	In ASAP and AORP				
	AS = BQ [Proved above]				
	$\angle SAP = \angle QBP [each 90^{\circ}]$				
	AP = BP [Proved above]				
	$\therefore \Delta SAP \cong \Delta QBP [SAS rule]$				
	So, SP = PQ (c.p.c.t.) (1)				
	Similarly, $PQ = QR$ (2)				
	$QR = RS \dots (3)$				
	and $\overrightarrow{RS} = SP$ (4)				
	from (1), (2), (3) and (4), we get				
	PQ = QR = RS = SP				
	As four sides of PQRS are equal, PQRS is a rhombus.				
	OR				
	In $\triangle BCQ$ and $\triangle DAP$				
	$BC = DA$ [opp. sides of II^{gm}]				
	$\angle CBQ = \angle ADP$ [Alternate interior angles]				
∥ └────					

	BQ = DP [Given]				
	$\therefore \Delta BCQ \cong \Delta DAP [SAS rule]$				
	So, $CQ = AP$ [c.p.c.t.] (1)				
	Similarly, $PC = QA$ (2)				
	As opp. sides of APCQ are equal So APCQ is a parallelogram.				
9	Using identity $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$				
	$\left(\frac{1}{4}a - \frac{1}{2}b + 1\right)^2 = \left(\frac{1}{4}a\right)^2 + \left(-\frac{1}{2}b\right)^2 + (1)^2 + 2\left(\frac{1}{4}a\right)\left(-\frac{1}{2}b\right) + 2\left(-\frac{1}{2}b\right)(1) + 2(1)\left(\frac{1}{4}a\right)$				
	$= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{1}{4}ab - b + \frac{1}{2}a$				
10	Radius of roller = $\frac{70}{2}$ = 35 cm				
	Area covered in one revolution = $2 X \frac{22}{7} X \frac{35}{100} X 1.5 = 3.3 \text{ m}^2$				
	Area of playground = $50 \times 33 = 1650 \text{ m}^2$				
	No. of revolution = $\frac{1650}{3.3} = 500$				
11	Let $p(x) = x^3 - 6x^2 + 11x - 6$				
	Possible factors of -6 are ± 1 , ± 2 , ± 3 , ± 6 etc.				
	$p(1) = (1)^3 - 6(1)^2 + 11(1) - 6 = 12 - 12 = 0$				
	So, $x - 1$ is a factor of $p(x)$.				
	By long division method,				
	$p(x) = (x - 1) (x^2 - 5x + 6)$				
	$= (x - 1) (x^{2} - 3x - 2x + 6) = (x - 1)(x - 2)(x - 3)$				
	OR				
	(i) $(999)^3 = (1000 - 1)^3$				
	$= (1000)^3 - (1)^3 - 3(1000)(1)(1000 - 1)$				
	Using identity $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$				
	= 100000000 - 1 - 2997000				
	= 997002999				
	(ii) $103 \times 107 = (100 + 3) \times (100 + 7)$				
	$= (100)^2 + (3 + 7) (100) + 3 \times 7$				
	Using identity $(x + a) (x + b) = x^2 + (a + b) x + ab$				
	= 10000 + 2100 + 21				
	= 12121				
12	Correct Construction				
13	(i) In ΔRSO ,				
	$s = \frac{6+5+5}{2} = 8 cm$				
	Using Herons formulae,				
	ar (RSO) = $\sqrt{8 X(8-6)X(8-5)X(8-5)}$ =12 cm ²				
	Also, $ar(RSO) = \frac{1}{2} X SO X RE$				
	$12 = \frac{1}{2} \times 5 \times \text{RE}$				
·					

		RE = 4.8 cm
		Therefore, $RM = 2 X RE = 2 X 4.8 = 9.6 cm$
	(ii)	In rt. angled ΔREO ,
		$(OR)^2 = (RE)^2 + (EO)^2$ [By Pythagoras Theorem]
		$(5)^2 = (4.8)^2 + (EO)^2$
		$EO = \sqrt{25 - 23.04} = 1.4 \text{ cm}$
14	(i)	$P(E) = \frac{61}{2000}$ or 0.0305
	(ii)	Favourable cases = $440 + 505 + 306 = 1251$
		$P(E) = \frac{1251}{2000} \text{ or } 0.6255$