Directorate of Education, GNCT of Delhi

Solutions of Practice Paper
Class - IX
Mathematics (Code: 041)
Term - II (2021 - 2022)
Maximum Marks: 40
Time Duration: 2 hrs.

Value point/Hints

Q. No.	Value point/Hints
1	Volume of removed water = Length X width X decrease in water level $\Rightarrow 18=20 \mathrm{X}$ width X 0.15 \therefore width $=6$ metre OR $\begin{aligned} & \text { SA of sphere }=616 \\ & \Rightarrow 4 X^{22} 7 \mathrm{r}^{2}=616 \\ & \therefore \mathrm{r}=7 \mathrm{~cm} \end{aligned}$ Volume of sphere $=\frac{4}{3} \times \frac{22}{7} \times(7)^{3}$ $=1437 \frac{1}{3} \mathrm{~cm}^{3}$
2	$2(-3)+5=-6+5=-1$
3	Slant height $=\sqrt{(7)^{2}+(24)^{2}}=25 \mathrm{~cm}$ Area of sheet required for a cap $=$ CSA of the cap $=\frac{22}{7} \times 7 \times 25=550 \mathrm{~cm}^{2}$ Area of sheet required for 10 such cap $=10 \times 550=5500 \mathrm{~cm}^{2}$
4	Given: A parallelogram $\mathrm{ABCD} \& \mathrm{BD}$ is its diagonal. To prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$ Proof: In $\triangle A B D$ and $\triangle C D B$, $A B=C D[\because$ opp. sides of IIgm $]$ DA $=$ BC $[\because$ opp. sides of IIgm $]$ $\mathrm{BD}=\mathrm{DB}$ [Common] $\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$ (SSS rule) Hence Proved
5	

Proof: In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$
$\mathrm{AO}=\mathrm{CO}$ [radii of the same circle]
$\mathrm{BO}=\mathrm{DO}$ [radii of the same circle]
$\mathrm{AB}=\mathrm{CD}$ [Given]
$\therefore \triangle \mathrm{AOB} \cong \triangle \mathrm{COD}$ (SSS rule)
So, $\angle \mathrm{AOB}=\angle \mathrm{COD}$ (c.p.c.t.)

Hence Proved

$6 \quad$| Given, Surface area of sphere | $=$ Surface area of cube |
| ---: | :--- |
| $4 \pi r^{2}$ | $=6 \mathrm{a}^{2}$ |
| $\therefore \frac{\mathrm{r}}{a}=\sqrt{\frac{6}{4 \pi}}$ | |
| |
 $\frac{\text { Volume of sphere }}{\text { Volume of cube }}=\frac{4}{3} \pi r^{3}$
 $a^{3}$$=\frac{4}{3} \pi\left(\frac{r}{a}\right)^{3}=\frac{4}{3} \pi\left(\sqrt{\frac{6}{4 \pi}}\right)^{3}=\frac{4}{3} \pi \times \frac{6}{4 \pi} \times\left(\sqrt{\frac{6}{4 \pi}}\right)=\left(\sqrt{\frac{6}{\pi}}\right)$ |

Therefore, required ratio is $\sqrt{6}: \sqrt{\pi}$.

OR
In $\triangle \mathrm{BCQ}$ and $\triangle \mathrm{DAP}$
$\mathrm{BC}=\mathrm{DA} \quad$ [opp. sides of IIgm]
$\angle \mathrm{CBQ}=\angle \mathrm{ADP}$ [Alternate interior angles]

	$\begin{aligned} & \hline \hline \mathrm{BQ}=\mathrm{DP} \quad \text { [Given] } \\ & \therefore \Delta \mathrm{BCQ} \cong \Delta \mathrm{DAP} \text { [SAS rule] } \\ & \text { So, } \mathrm{CQ}=\mathrm{AP} \quad \text { [c.p.c.t.] }-------- \text { (2) } \\ & \text { Similarly }, \mathrm{PC}=\mathrm{QA} \end{aligned}$ As opp. sides of APCQ are equal So APCQ is a parallelogram.
9	$\begin{aligned} & \text { Using identity }(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ab}+2 \mathrm{bc}+2 \mathrm{ca} \\ & \begin{aligned} \left(\frac{1}{4} a-\frac{1}{2} b+1\right)^{2} & =\left(\frac{1}{4} a\right)^{2}+\left(-\frac{1}{2} b\right)^{2}+(1)^{2}+2\left(\frac{1}{4} a\right)\left(-\frac{1}{2} b\right)+2\left(-\frac{1}{2} b\right)(1)+2(1)\left(\frac{1}{4} a\right) \\ & =\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} \mathrm{ab}-\mathrm{b}+\frac{1}{2} \mathrm{a} \end{aligned} \end{aligned}$
10	Radius of roller $=\frac{70}{2}=35 \mathrm{~cm}$ Area covered in one revolution $=2 \times \frac{22}{7} \times \frac{35}{100} \times 1.5=3.3 \mathrm{~m}^{2}$ Area of playground $=50 \times 33=1650 \mathrm{~m}^{2}$ No. of revolution $=\frac{1650}{3.3}=500$
11	Let $p(x)=x^{3}-6 x^{2}+11 x-6$ Possible factors of -6 are $\pm 1, \pm 2, \pm 3, \pm 6$ etc. $p(1)=(1)^{3}-6(1)^{2}+11(1)-6=12-12=0$ So, $x-1$ is a factor of $p(x)$. By long division method, $\begin{aligned} \mathrm{p}(\mathrm{x}) & =(\mathrm{x}-1)\left(\mathrm{x}^{2}-5 \mathrm{x}+6\right) \\ & =(\mathrm{x}-1)\left(\mathrm{x}^{2}-3 \mathrm{x}-2 \mathrm{x}+6\right)=(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3) \end{aligned}$ OR (i) $\begin{aligned} &(999)^{3}=(1000-1)^{3} \\ &=(1000)^{3}-(1)^{3}-3(1000)(1)(1000-1) \\ & \text { Using identity }(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b) \\ &=1000000000-1-2997000 \\ &=997002999 \end{aligned}$ (ii) $\begin{aligned} & 103 \times 107=(100+3) X(100+7) \\ &=(100)^{2}+(3+7)(100)+3 \times 7 \\ & \text { Using identity }(x+a)(x+b)=x^{2}+(a+b) x+a b \\ &=10000+2100+21 \\ &=12121 \end{aligned}$
12	Correct Construction
13	(i) In $\triangle \mathrm{RSO}$, $\mathrm{s}=\frac{6+5+5}{2}=8 \mathrm{~cm}$ Using Herons formulae, $\begin{aligned} & \operatorname{ar}(\mathrm{RSO})=\sqrt{8 \mathrm{X}(8-6) \mathrm{X}(8-5) \mathrm{X}(8-5)}=12 \mathrm{~cm}^{2} \\ & \text { Also, } \operatorname{ar}(\mathrm{RSO})=\frac{1}{2} \times \text { SO X RE } \\ & \qquad 12=\frac{1}{2} \times 5 \times \text { RE } \end{aligned}$

$$
\mathrm{RE}=4.8 \mathrm{~cm}
$$

Therefore, $\mathrm{RM}=2 \mathrm{XRE}=2 \mathrm{X} 4.8=9.6 \mathrm{~cm}$
(ii) In rt. angled \triangle REO,
$(\mathrm{OR})^{2}=(\mathrm{RE})^{2}+(\mathrm{EO})^{2}$ [By Pythagoras Theorem]
$(5)^{2}=(4.8)^{2}+(\mathrm{EO})^{2}$
$\mathrm{EO}=\sqrt{25-23.04}=1.4 \mathrm{~cm}$
(i) $\mathrm{P}(\mathrm{E})=\frac{61}{2000}$ or 0.0305
(ii) Favourable cases $=440+505+306=1251$
$P(E)=\frac{1251}{2000}$ or 0.6255

