Directorate of Education, GNCT of Delhi
 Practice Paper -1
 (2023-24)
 Class - XII
 Mathematics (Code: 041)

General Instructions:

1. This Question paper contains - five sections $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.(20 Marks)
3. Section Bhas 5 Very Short Answer (VSA)-type questions of 2 marks each.(10 Marks)
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.(18 Marks)
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.(20 Marks)
6. Section \mathbf{E} has 3 Source based/Case based/passage based/integrated units of assessment (4 marks each) with sub parts.(12 Marks)

	Section - A	
	Question Number 1-18 are of MCQ type question one mark each.	
1.	The domain of the function $\cos ^{-1}(2 x-1)$ is :	1
	(a) $[0,1] \longrightarrow$ (b) $[-1,1]$	
	(c) $(-1,1) \quad$ (d) $[0, \pi]$	
2.	If $\mathrm{A}=\left[\begin{array}{lll}0 & a & b \\ 2 & 1 & c \\ 3 & 4 & 5\end{array}\right]$ is a symmetric matrix , then the value of $(a+b+c)$ is ;	1
	(a) 9 (b) 8	
	(c) 7 (d) 6	
3.	If a matrix $A=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]_{1 \times 3}$ then the matrix $A A^{T} \quad$ (where A^{T} is transpose of A) is:	1
	(a) $[0]$ (b) [3]	
	(c) [5] ${ }^{\text {(d) }}\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$	

4.

If $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
then the value of $|\operatorname{adj} \mathrm{A}|$ is :

(a) 6	(b) $1 / 6$
(c) 31	(d) 216

5. If matrices A, B and C are such that $A_{p \times 4} \cdot B_{q \times 5}=C_{2 \times 5}$, then the value of $p^{2}-q^{2}$ is:

(a) -12	(b) 12
(c) 16	(d) -16

6.

The graph of $x \leqslant 3$ and $y \geqslant 3$ lie in:

(a) $1^{\text {st }}$ and $2^{\text {nd }}$ quadrant	(b) $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrant
(c) $3^{\text {rd }}$ and $4^{\text {th }}$ quadrant	(d) $1^{\text {st }}$ and $4^{\text {th }}$ quadrant

7.

Sum of order and degree of differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{1}{3}} \cdot\left(\frac{d y}{d x}\right)^{\frac{1}{3}}=0$ is :

(a) 6	(b) 5
(c) 3	(d) 2

8.

(a) 0
(b) 1
(c) x
(d) x^{2}
9. $\int \frac{x^{3}}{x+1} d x$ is equal to :
(a) $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1-x|+C$
(b) $x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1-x|+C$
(c)
$x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1+x|+C$
(d)
$x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C$
10.

Integrating factor of $x \frac{d y}{d x}+2 y=x^{2} \quad$ is:

(a) x^{3}	(b) x^{2}
(c) x^{4}	(d) x

11.

The degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=\frac{d^{2} y}{d x^{2}} \quad$ is:
12.
(b) $\frac{3}{2}$
(c) Not defined
(d) 2

The projection of $2 \hat{i}+3 \hat{j}-6 \hat{k}$ on the vector $\hat{i}-2 \hat{j}+3 \hat{k} \quad$ is :
(a) $\frac{2}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}$
(c) $\frac{3}{\sqrt{14}}$
(d)
$\frac{-2}{\sqrt{14}}$
13. Area of the parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{j}$ is given by :

(a) $10 \sqrt{3}$	(b) $5 \sqrt{3}$
(c) 8	(d) 4

14. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then the angle between \vec{a} and \vec{b} is:
(a) $\frac{\pi}{2}$
(b) 0
(c)
$\frac{\pi}{4}$
(d)
$\frac{\pi}{6}$
15. The direction ratios of line are $1,3,5$ then its direction cosines are :
(a) $\frac{1}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{5}{\sqrt{35}}$
(b)
$\frac{1}{9}, \frac{1}{3}, \frac{5}{9}$
(c)
(d) None of these
16. : For two independent events $\mathrm{A} \& \mathrm{~B} \quad P(A \cup B)=\frac{2}{3}, P(A)=\frac{2}{5}$, then $\mathrm{P}(\mathrm{B})$ is equal to:
(a) $\frac{5}{9}$
(b) $\frac{4}{9}$
(c) $\frac{2}{9}$
(d) $\frac{3}{9}$
17.

The minimum value of $Z=x+y$ subjet to the constraints $x \leq 20, y \geq 10$ and $x, y \geq 0, \quad$ is :

(a) 0	(b) 10
(c) 20	(d) 30

18. If the objective function for the LPP is $Z=11 x+7 y$ and the corner points of the bounded feasible regions are $(3,2),(0,5),(0,3)$ then the minimum value of Z occurs at :

(a) $(3,2)$	(b) $(0,5)$
(c) $(0,3)$	(d) does not exist

(ASSERTION-REASON BASED QUESTIONS)

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.
19.
Assertion(A) : $c \cos ^{-1}\left(\cos \left(\frac{7 \pi}{6}\right)\right)=\frac{5 \pi}{6}$

Reason (R): $\cos ^{-1}(\cos x)=x$ for all $x \in(10, \pi)$
Assertion(A) :If a line makes angles $\alpha, \beta, \gamma \quad$ with the positive direction of coordinate axes then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$

Reason (\mathbf{R}): :): Sum of squares of direction cosines of a line is 1

(Section B)

This section contains 5 Very Short Answer (VSA)-type questions of 2 marks each.
21.

The graph of an inverse trigonometric function $f(x)$ is given below, observe the graph and answer the following questions

(i) What is the value of $f\left(\frac{-1}{2}\right)$?
(ii) If $f(x)=\frac{\pi}{4}$, then find the value of x.

Show that the function f in $\quad A=R-\left\{\frac{2}{3}\right\}$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is one- one

23.	If $y=x^{y}$,then find $\frac{d y}{d x}$ OR If $y=\sin ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)+\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right) \text { find } \frac{d y}{d x}$	2
24.	A particle moves along the curve $x^{2}=2 y$. At what point , ordinate increases at the same rate as abscissa increases ?	2
25.	Find $\int \frac{\log x}{(1+\log x)^{2}} d x$ Find the value of $\int_{0}^{1} \tan ^{-1}\left(\frac{1-2 x}{1+x-x^{2}}\right) d x$	2
	Section C This section contains 6 Short Answer (SA)-type questions of 3marks each.	
26.	If $x=a \sin ^{2} \theta, y=a \cos ^{2} \theta$, then find $\frac{d^{2} y}{d x^{2}}$	3
27.	A bag A contains 4 black balls and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appear on it, then bag A is chosen, otherwise bag B. If two balls are drawn at random (Without replacement) from the selected bag, find the probability of one of them being red and another black. OR From a lot of 15 bulbs which include 5 defectives, a sample of two bulbs is drawn at random (without replacement).Find the probability distribution of the number of defective bulbs.	3
28.	Evaluate $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$ Find $\quad \int e^{x} \cdot \sin x d x$	3
29.	Find the general solution of $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x$ OR Solve following differential equation $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$	3
30.	Solve the following Linear programming problem graphically : Maximize : $\mathrm{Z}=4 \mathrm{x}+\mathrm{y}$ subject to the constraints $\quad x+y \leq 50,3 x+y \leq 90, x \geq 0, y \geq 0$	3
31.	Find the interval in which function $f(x)=2 x^{3}-9 x^{2}+12 x+15$ is strictly increasing and strictly decreasing	3
	खंड डी /(SECTION D) This section contains four Long Answer (LA)-type questions of 5 marks each.	
32.	Find the area of the region included between the curves $4 y=3 x^{2}$ and the line $2 y=3 x+12$	5
33.	Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) \in R(c, d) \quad$ If $\operatorname{ad}(\mathrm{b}+\mathrm{c})=\mathrm{bc}(\mathrm{a}+\mathrm{d})$. Prove that R is an equivalence relation.	5
34.	Find the shortest distance between the lines given by $\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k} \quad$ and $\quad \vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$ OR Find the vector and cartesian equations of the line which is perpendicular to the lines with equations and and passes through the point ($1,1,1$). Also find the angle between the given	5

	lines.	
35.	Evaluate the product $A B$, where : $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$ Hence solve the system of linear equations $\begin{aligned} & x-y=3 \\ & 2 x+3 y+4 z=17 \\ & y+2 z=7 \end{aligned}$ OR If $\quad A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$, find $A^{2}-5 A+4 I$ and hence find a matrix X such that $A^{2}-5 A+4 I+X=0$	5
	(Section E) Source based/Case based/passage based/integrated units of assessment Questions	
36.	A bike is running on the road along the line $\frac{x-6}{1}=\frac{2-y}{2}=\frac{z-2}{2}$ while an aeroplane is flying in the space along the line $\frac{x+4}{3}=\frac{y}{-2}=\frac{z+1}{-2}$ Based on the information given above answer the following questions. 1(i) Write the equations of both the lines in vector form. (II) Find a vector perpendicular to both the given lines. (iii) Find shortest distance between both skew lines. OR (III) For which value of λ the lines $\frac{x-6}{1}=\frac{2-y}{2}=\frac{z-2}{2} \quad$ and $\quad \frac{x+4}{3}=\frac{y}{-2}=\frac{z+1}{-2}$ Intersect each other	1+1+2
37.	In a smart city Indore a residential society comprising of 100 houses, there were 60 childrens between the ages 10-15 yearsThey were inspired by their teacher to start composting to ensure that biodegradable waste is recyled. For this purpose instead of each child doing it for only his/her house childrens convinced the Residents welfare association to do it as a society initiative. For this they identified a square area ina local park. Local authorities charged amount of ₹50 per sq metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ 400 x or $\quad X(\text { depth })^{2}$. Association will like to have minimum cost .	1+1+2

