DIRECTORATE OF EDUCATION Govt. of NCT, Delhi

SUPPORT MATERIAL

(2023-24)

CLASS : IX

MATHEMATICS

(ENGLISH MEDIUM)

Under the Guidance of

> Shri Ashok Kumar
> Secretary (Education)

Shri Himanshu Gupta
Director (Education)

Dr. Rita Sharma
Addl. DE (School \& Exam.)

Coordinators

Mr. Sanjay Subhas Kumar	Mrs. Ritu Singhal	Mr. Raj Kumar	Mr. Krishan Kumar
DDE (Exam)	OSD (Exam)	OSD (Exam)	OSD (Exam)

Production Team

Anil Kumar Sharma

Published at Delhi Bureau of Text Books, 25/2 Institutional Area, Pankha Road, New Delhi-58 by Rajesh Kumar, Secretary, Delhi Bureau of Text Books and Printed by S G Print Packs Pvt. Ltd., F-478, Sector-63, Noida-201301, Uttar Pradesh.

ASHOK KUMAR, IAS Secretary (Education)

राष्ट्रीय राजधानी क्षेत्र	
पुराना सचिवालय, दिल्ली-110054	
दूरभाष : 23890187 टेलीफैक्स : 23890119	
Pr Secretary (Education)	
Government of National Capital Territory of Delhi	
hone : 23890187 Telefax : 23890119	
. NO. :DE.5/228) Exam/Message/sm $24 \cdot 11.2023 \quad 2018 / 1095$	

MESSAGE

"Children are like wet cement, whatever falls on them makes an impression."

Embracing the essence of this quote, the Directorate of Education, GNCT of Delhi is unwavering in its commitment to its core mission of delivering high-quality education to all its students. With this objective in mind, DoE annually develops support materials meticulously tailored to suit the learning needs of students from classes IX to XII.

Every year, our expert faculty members shoulder the responsibility of consistently reviewing and updating the Support Material to synchronize it with the latest changes introduced by CBSE. This continuous effort is aimed at empowering students with innovative approaches and techniques, fostering their problem-solving skills and critical thinking abilities. I am confident that this year will be no exception, and the Support Material will greatly contribute to our students' academic success.

The support material is the result of unwavering dedication of our team of subject experts. The Support Material has been specially curated for our students, with the belief that its thoughtful and intelligent utilization will undoubtedly elevate the standards of learning and will continue to empower our students to excel in their examinations.

I wish to congratulate the entire team for their invaluable contribution in creating a highly beneficial and practical Support Material for our students.

I extend my best wishes to all our students for a promising and bright future.

(Ashok Kumar)

HIMANSHU GUPTA, IAS
Director, Education \& Sports
No. Ps|is $|2023| 349$
Duted: 29/11/2023

Directorate of Education

Govt. of NCT of Delhi

Room No. 12, Civil Lines Near Vidhan Sabha,

Delhi-110054
Ph.: 011-23890172
E-mail: diredu@nic.in

MESSAGE

It brings me immense pleasure to present the support material for students of classes IX to XII, meticulously crafted by our dedicated subject experts. Directorate of Education is committed to empower educators and students alike by providing these resources free of cost for students of all government and government aided schools of Delhi.

The support material is an appreciable effort to align the content with the latest CBSE patterns. It has been carefully designed as a resource to facilitate the understanding, acquisition and practice of essential skills and competencies outlined in the curriculum.

The core of this support material lies in providing a framework for adopting an analysis-based approach to learning and problem-solving. It aims to prompt educators to reflect on their teaching methodologies and create an interactive pathway between the child and the text.

In the profound words of Dr A.P.J. Abdul Kalam, "Educationists should build the capacities of the spirit of inquiry, creativity, entrepreneurial and moral leadership among students and become their role model."

The journey of education is ongoing; it's the process, not just the outcome, which shapes us. This support material endeavours to be that catalyst of change for eachstudent of Directorate of Education.

Let us embark on this transformative journey together, ensuring that every student feels equipped not only with the knowledge but also, with the skills and mindset to thrive in the 21 st century.

I wish you all the best for all your future endeavours.

Govt. of NCT of Delhi
Directorate of Education Old Secretariat, Delhi-110054 Ph. : 23890185
D.O. No. DE :5/228. Exam| Mexage/sm

Dated: . $24.11 .2023 \ldots \ldots \ldots 1096$

MESSAGE

The persistent efforts of the Directorate in making the course material more accessible and student-friendly are evident in the conscientious preparation of the Support Material. Our team consistently adapts to the evolving educational landscape, ensuring that the Support Material for the various subjects of classes 9 to 12 align with the latest CBSE guidelines and syllabi prescribed for the annual examinations.

The Support Material encapsulates crucial subject-specific points and facts, tailored to suit the students, all presented in a lucid language. It is our firm belief that these resources will significantly augment the academic prowess of our students, empowering them to excel in their upcoming examinations.

I extend my heartfelt congratulations to the diligent officials and teachers whose dedication and expertise have played a pivotal role in crafting this invaluable content/resource.

I convey my best wishes to all our students for a future brimming with success. Remember, every page you read is a step towards an enlightened tomorrow.

(Dr Rita Sharma)
_

$$
I_{-}
$$

-

$$
\left.\right|^{-}
$$

DIRECTORATE OF EDUCATION Govt. of NCT, Delhi

SUPPORT MATERIAL (2023-24)

CLASS : IX MATHEMATICS
(ENGLISH MEDIUM)

NOT FOR SALE
_

$$
I_{-}
$$

-

$$
\left.\right|^{-}
$$

भारत का संविधान

भाग 4क

नागरिकों के मूल कर्तव्य

अनुच्छेद 51 क

मूल कर्तव्य- भारत के प्रत्येक नागरिक का यह कर्तव्य होगा कि वह -
(क) संविधान का पालन करे और उसके आदर्शों, संस्थाओं, राष्ट्रध्वज और राष्ट्रगान का आदर करे;
(ख) स्वतंत्रता के लिए हमारे राष्ट्रीय आंदोलन को प्रेरित करने वाले उच्च आदर्शों को हृदय में संजोए रखे और उनका पालन करें
(ग) भारत की संप्रभुता, एकता और अखंडता की रक्षा करे और उसे अक्षुण्ण बनाए रखे;
(घ) देश की रक्षा करे और आह्वान किए जाने पर राष्ट्र की सेवा करें;
(ङ) भारत के सभी लोगों में समरसता और समान भ्रातृत्व की भावना का निर्माण करे जो धर्म, भाषा और प्रदेश या वर्ग पर आधारित सभी भेदभावों से परे हो, ऐसी प्रथाओं का त्याग करे जो महिलाओं के सम्मान के विर्द्ध्ध हों;
(च) हमारी सामाजिक-सांस्कृतिक गौरवशाली परंपरा का महत्त्व समझे और उसका परिक्षण करे;
(छ) प्राकृतिक पर्यावरण की, जिसके अंतर्गत वन, झील, नदी और वन्य जीव हैं, रक्षा करे और उसका संवर्धन करे तथा प्राणिमात्र के प्रति दयाभाव रखे;
(ज) वैज्ञानिक दृष्टिकोण, मानववाद और ज्ञानार्जन तथा सुधार की भावना का विकास करे;
(झ) सार्वजनिक संपत्ति को सुरक्षित रखे और हिंसा से दूर रहें;
(ज) व्यक्तिगत और सामूहिक गतिविधियों के सभी क्षेत्रों में उत्कर्ष की ओर बढ़ने का सतत् प्रयास करे, जिससे राष्ट्र निरंतर बढ़ते हुए प्रयत्न और उपलब्धि की नई ऊँचाइयों को छू सके; और
(ट) यदि माता-पिता या संरक्षक है तो छह वर्ष से चौदह वर्ष तक की आयु वाले अपने, यथास्थिति, बालक या प्रतिपाल्य को शिक्षा के अवसर प्रदान करे।

Constitution of India

 Part IV A (Article 51 A)
Fundamental Duties

It shall be the duty of every citizen of India -
(a) to abide by the Constitution and respect its ideals and institutions, the National Flag and the National Anthem;
(b) to cherish and follow the noble ideals which inspired our national struggle for freedom;
(c) to uphold and protect the sovereignty, unity and integrity of India;
(d) to defend the country and render national service when called upon to do so;
(e) to promote harmony and the spirit of common brotherhood amongst all the people of India transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory to the dignity of women;
(f) to value and preserve the rich heritage of our composite culture;
(g) to protect and improve the natural environment including forests, lakes, rivers, wildlife and to have compassion for living creatures;
(h) to develop the scientific temper, humanism and the spirit of inquiry and reform;
(i) to safeguard public property and to abjure violence;
(j) to strive towards excellence in all spheres of individual and collective activity so that the nation constantly rises to higher levels of endeavour and achievement;
*(k) who is a parent or guardian, to provide opportunities for education to his child or, as the case may be, ward between the age of six and fourteen years.

Note: The Article 51A containing Fundamental Duties was inserted by the Constitution (42nd Amendment) Act, 1976 (with effect from 3 January 1977).
*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from 1 April 2010).

THE CONSTITUTION OF INDIA

PREAMBLE
WE, THE PEOPLE OF INDIA, having solemnly resolved to constitute India into a ${ }^{1}$ [SOVEREIGN SOCIALIST SECULAR DEMOCRATIC REPUBLIC] and to secure to all its citizens :

JUSTICE, social, economic and political;
LIBERTY of thought, expression, belief, faith and worship;
EGUALITY of status and of opportunity; and to promote among them all
FRATERNITY assuring the dignity of the individual and the ${ }^{2}$ [unity and integrity of the Nation];
IN OUR CONSTITUENT ASSEMBLY this twenty-sixth day of November, 1949 do HEREBY ADOPT, ENACT AND GIVE TO OURSELVES THIS CONSTITUTION.

1. Subs. by the Constitution (Forty-second Amendment) Act, 1976, Sec.2, for "Sovereign Democratic Republic" (w.e.f. 3.1.1977)
2. Subs. by the Constitution (Forty-second Amendment) Act, 1976, Sec.2, for "Unity of the Nation" (w.e.f. 3.1.1977)

MATHEMATICS (IX)

The Syllabus in the subject of Mathematics has undergone changes from time to time in accordance with growth of the subject and emerging needs of the society. The present revised syllabus has been designed in accordance with National Curriculum Framework 2005 and as per guidelines given in the Focus Group of Teaching of Mathematics which is to meet the emerging needs of all categories of students. For motivating the teacher to related the topics to real life problems and other subject areas, greater emphasis has been laid on applications of various concepts

The curriculum at secondary stage primarily aims at enhancing the capacity of students to employ Mathematics in solving day-to-day life problem and studying the subject as a separate discipline. IT is expected that students should acquired the ability to solve problem using algebraic methods and apply the knowledge of simple trigonometry to solve problem of height and distances. Carrying out experiments with numbers and forms of geometry, framing hypothesis and verifying these with further observations form inherent part of Mathematics learning at this stage. The proposed curriculum includes the study of number system, algebra, geometry, trigonometry, mensuration, statistics, graphs and coordinate geometry etc.

The teaching of Mathematics should be imparted through activities which may involve the use of concrete materials, models, patterns, charts, pictures, posters, games, puzzles and experiments.

Objectives

The broad objectives of teaching of Mathematics at secondary stage are to help the learners to:

- consolidate the Mathematical knowledge and skills acquired at the upper primary stage; acquire knowledge and understanding, particularly by way of motivation and visualization, of basic concepts, terms, principles and symbols and underlying processes and skills; develop mastery of basic algebraic skills.
- develop drawing skills;
- feel the flow of reason while proving a result or solving a problem:
- apply the knowledge and skills acquired to solve problems and wherever possible, by more than one method.
- to develop ability to think, analyze and articulate logically;
- to develop awareness of the need for national integration, protection of environment, observance of small family norms, removal of social barriers, elimination of gender biases;
- to develop necessary skills to work with modern technological devices and mathematical software's.
- to develop interest in mathematics as a problem-solving tool in various fields for its beautiful structures and patterns, etc.
- to develop reverence and respect towards great Mathematicians for their contributions to the field of Mathematics;
- to develop interest in the subject by participating in related competitions;
- to acquaint students with different aspects of Mathematics used in daily life;
- to develop an interest in students to study Mathematics as a discipline.

TERM-WISE SYLLABUS

SESSION: 2023-24
CLASS: IX
SUBJECT: MATHEMATICS (CODE: 041) COURSE STRUCTURE

Units	Unit Name	Marks
I	Number Systems	10
II	Algebra	20
III	Coordinate Geometry	04
IV	Geometry	27
V	Mensuration	13
VI	Statistics \& Probability	06
	Total	80
	Internal Assessment	20
	Grand Total	100

UNIT I: NUMBER SYSTEMS

Chapter-1: Real Numbers

(18) Periods

1. Review of representation of natural numbers, integers and rational numbers on the number line. Rational numbers as recurring/terminating decimals. Operations on real numbers.
2. Examples of non-recurring/non-terminating decimals. Existence of non-rational numbers (irrational numbers) such as $\sqrt{2}, \sqrt{3}$ and their representation on the number line. Explaining that every real number is represented by a unique point on the number line and conversely, viz. every point on the number line represents a unique real number.
3. Definition of nth root of a real number.
4. Rationalization (with precise meaning) of real numbers of the type $\frac{1}{a+b \sqrt{x}}$ and $\frac{1}{\sqrt{x}+\sqrt{y}}$ (and their combinations) where x and y are natural number and a and b are integers.
5. Recall of laws of exponents with integral powers. Rational exponents with positive real bases (to be done by particular cases, allowing learner to arrive at the general laws.)

UNIT II: ALGEBRA

Chapter-2: Polynomials

(26) Periods

Definition of a polynomial in one variable, with examples and counter examples. Coefficients of a polynomial, terms of a polynomial and zero polynomial. Degree of a polynomial. Constant, linear, quadratic and cubic polynomials. Monomials, binomials, trinomials. Factors and multiples. Zeroes of a polynomial. Motivate and State the Remainder Theorem with examples. Statement and proof of the Factor Theorem. Factorization of $a x^{2}+b x+c, a \neq 0$ where a, b and c are real numbers, and of cubic polynomials using the Factor Theorem.
Recall of algebraic expressions and identities. Verification of identities:
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
$(x \pm y)^{3}=x^{3} \pm y^{3} \pm 3 x y(x \pm y)$
$x^{3} \pm y^{3}=(x \pm y)\left(x^{2} \pm x y+y^{2}\right)$
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
and their use in factorization of polynomials.

Chapter-4: Linear Equations in Two Variables

(16) Periods

Recall of linear equations in one variable. Introduction to the equation in two variables. Focus on linear equations of the type $a x+b y+c=0$. Explain that a linear equation in two variables has infinitely many solutions and justify their being written as ordered pairs of real numbers, plotting them, and showing that they lie on a line.

UNIT III: COORDINATE GEOMETRY

Chapter-3: Coordinate Geometry
(7) Periods

The Cartesian plane, coordinates of a point, names and terms associated with the coordinate plane, notations.

UNIT IV: GEOMETRY

Chapter-5: Introduction To Euclid's Geometry
History - Geometry in India and Euclid's geometry. Euclid's method of formalizing observed phenomenon into rigorous Mathematics with
definitions, common/obvious notions, axioms/postulates and theorems. The five postulates of Euclid. Showing the relationship between axiom and theorem, for example:
(Axiom) 1. Given two distinct points, there exists one and only one line through them.
(Theorem) 2. (Prove) Two distinct lines cannot have more than one point in common.

Chapter-6: Lines and Angles

(15) Periods

1. (Motivate) If a ray stands on a line, then the sum of the two adjacent angles so formed is 180° and the converse.
2. (Prove) If two lines intersect, vertically opposite angles are equal.
3. (Motivate) Lines which are parallel to a given line are parallel.

Chapter-7: Triangles

(22) Periods

1. (Motivate) Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS Congruence).
2. (Prove) Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence).
3. (Motivate) Two triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruence).
4. (Motivate) Two right triangles are congruent if the hypotenuse and a side of one triangle are equal (respectively) to the hypotenuse and a side of the other triangle. (RHS Congruence).
5. (Prove) The angles opposite to equal sides of a triangle are equal.
6. (Motivate) The sides opposite to equal angles of a triangle are equal.

Chapter-8: Quadrilaterals

(13) Periods

1. (Prove) The diagonal divides a parallelogram into two congruent triangles.
2. (Motivate) In a parallelogram opposite sides are equal, and conversely.
3. (Motivate) In a parallelogram opposite angles are equal, and conversely.
4. (Motivate) A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and equal.
5. (Motivate) In a parallelogram, the diagonals bisect each other and conversely.
6. (Motivate) In a triangle, the line segment joining the mid points of any two sides is parallel to the third side and is half of it and (motivate) its converse.

Chapter-9: Circles

(17) Periods

1. (Prove) Equal chords of a circle subtend equal angles at the centre and (motivate) its converse.
2. (Motivate) The perpendicular from the centre of a circle to a chord bisects the chord and conversely, the line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
3. (Motivate) Equal chords of a circle (or of congruent circles) are equidistant from the centre (or their respective centres) and conversely.
4. (Prove) The angle subtended by an are at the centre is double the angle subtended by it at any point on the remaining part of the circle.
5. (Motivate) Angles in the same segment of a circle are equal.
6. (Motivate) If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle.
7. (Motivate) The sum of either of the pair of the opposite angles of a cyclic quadrilateral is 180° and its converse.

UNIT V: MENSURATION

Chapter-10: Areas
(5) Periods

Area of a triangle using Heron's formula (without proof).

Chapter-11: Surface Areas and Volumes

(17) Periods

Surface areas and volumes of spheres (including hemispheres) and right circular cones.

UNIT VI: STATISTICS \& PROBABILITY

Chapter-12: Statistics

(15) Periods

Bar graphs, histograms (with varying base lengths) and frequency polygons.

- Mental Maths Practice
- Revision from Support Material

MATHEMATICS
 Code (041)
 QUESTION PAPER DESIGN
 Class-IX (2023-24)

Time: 3 Hrs.
Max. Marks: $\mathbf{8 0}$

S. No.	Typology of Questions	Total Marks	\%Weight-age (approx.)	
1.	Remembering: Exhibit memory of previously learned material by recalling facts, terms, basic concepts and answers. Understanding: Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions and stating main ideas.	43	54	
2.	Applying: Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	19	24	
3.	Analysing: Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations. Evaluating: Present and defend opinions by making judgments about information, validity or ideas, or quality of work based on a set of criteria. Creating: Compile information together in a different way by combining elements in a new pattern proposing alternative solutions.	18	22	

Internal Assessment	20 Marks
Pen Paper Test and Multiple Assessment (5+5)	10 Marks
Portfolio	05 Marks
Lab Practical (Lab activities to be done from the prescribed books)	05 Marks

List of Group Leader and Subject-Experts For Preparation/Review of Support Material

Class-IX (2023-24)
 Subject : Mathematics

1. Mr. Satyawan	Vice Principal SBV, Rouse Avenue, DDU Marg (2127001)
2. Ms. Aakanksha	PGT (Mathematics) Core Academic Unit (CAU)
3. Ms. Neha Chaudhary	TGT (Mathematics) Core Academic Unit (CAU)
4. Ms. Gagandeep Kaur	TGT (Mathematics) GGSS, Majlis Park, Delhi (1309036)
5. Ms. Rinku Gupta	TGT (Mathematics)
	RPSKV Rithala, Delhi (1413026)
6. Mr. Vikas Dongre	TGT (Mathematics) SBV, Rouse Avenue, DDU Marg (2127001)
	TGT (Mathematics)
7. Mr. Julfikar Ahmad	Dr. Zakir Hussain Memorial
	Sr. Sec. School, Jafrabad (1105137)

IX - Mathematics

CONTENTS

Ch. No. Chapters Pages No.

1. Number Systems 1
2. Polynomials 19
3. Co-ordinate Geometry 28
4. Linear Equation in two variables 38
5. Introduction to Euclid's Geometry 57
6. Lines and Angles 68
7. Triangles 83
8. Quadrilaterals 97
9. Circles 115
10. Heron's Formula 137
11. Surface Area and Volumes 145
12. Statistics 155

- Assertion Reasoning Based Questions 166
- Case Study Based Questions 172
- Practice Question Paper-I with solution 194
- Practice Question Paper-II with solution 206
- Practice Question Paper-III with solution 217
_

$$
I_{-}
$$

-

$$
\left.\right|^{-}
$$

CHAPTER-1

NUMBER SYSTEMS

CHAPTER-1

NUMBER SYSTEMS

KEY POINTS

- $1,2,3$, \qquad are natural numbers which are represented by N .
- $0,1,2,3$, \qquad are whole numbers which are represented by W .
- -3. $-2,-1,0,1,2,3$ \qquad are integers which are represented by Z or I .
- A number is a rational if
(a) it can be represented in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

OR

(b) its decimal expansion is terminating (e.g. $\frac{2}{5}=0.4$)

OR
(c) its decimal expansion is non-terminating recurring (repeating) (e.g. $0 . \overline{1234}=0.1234234 \ldots \ldots \ldots$.)

- A number is irrational number if
(a) it can not be represented in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

OR

(b) its decimal expansion is non-terminating non-recurring (e.g. 0.1010010001 \qquad ..)

- All rational and irrational numbers collectively form real numbers.
- There are infinite rational numbers between any two rational numbers.
- There is a unique real number corresponding to every point on the number line. Also, corresponding to each real number, there is a unique point on the number line.
- Rationalisation of a denominator means to change the Irrational denominator to rational form.
- To rationalise the denominator of $\frac{1}{\sqrt{a} \pm b}$, we multiply this by $\frac{\sqrt{a} \mp b}{\sqrt{a} \mp b}$, where a is a natural number and b is an integer.
- If r is rational and s is irrational then $r+s, r-s, r \cdot s$ are always irrational numbers but $\frac{r}{s}$ may be rational or irrational. For $r \neq 0, r \cdot s$ and $\frac{r}{s}$ are always irrational.
- Law of Exponents: Let $a>0$ be a real number and m amd n are rational numbers, then
(1) $a^{m} a^{n}=a^{m+n}$
(2) $a^{m} \div a^{n}=a^{m-n}$
(3) $\left(a^{m}\right)^{n}=a^{m n}$
(4) $a^{m} \cdot b^{m}=(a b)^{m}$
(5) $a^{0}=1$
(6) $a^{-m}=\frac{1}{a^{m}}$
- For positive real numbers a and b, the following identities hold
(1) $\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$
(2) $\sqrt{a} \div \sqrt{b}=\sqrt{\frac{a}{b}}$
(3) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$
(4) $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$
(5) $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$

All natural numbers, whole numbers and integers are rational
Prime Numbers: All natural numbers that have exactly two factors (i.e., 1 and itself) are called prime numbers, e.g., $2,3,5,7,11,13,17,19,23, \ldots$ etc.

Composite Numbers: Those natural number which have more than two factors are known as composite number. e.g., $4,6,8,9,10,12, \ldots$
1 is neither prime nor composite.
$\sqrt[n]{a}=a^{1 / n}$ where ' a ' is positive real number and n is a positive integer
$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$ where a is positive real number. m and n are co-prime integers and $n>0$

Types of Numbers

[Neither Prime nor composite]

$$
(3,5,7,11 \ldots)
$$ Numbers (9, $15 \ldots$...

Very Short Answer Questions (1 mark)

1. Which of the following is a rational number?
(a) $1+\sqrt{5}$
(b) $2 \sqrt{3}$
(c) 0
(d) π
2. Which of the following is irrational?
(a) $\sqrt{\frac{4}{9}}$
(b) $\frac{\sqrt{12}}{\sqrt{3}}$
(c) $\sqrt{81}$
(d) $\sqrt{5}$
3. If $\boldsymbol{x}=2+\sqrt{3}$ then $(1 / x)$ is equal to
(a) $2+\frac{1}{\sqrt{3}}$
(b) $\frac{1}{2-\sqrt{3}}$
(c) $2-\sqrt{3}$
(d) $\frac{1}{2}+\sqrt{3}$
4. An irrational number between $\sqrt{2}$ and $\sqrt{3}$ is
(a) $\frac{\sqrt{2}+\sqrt{3}}{2}$
(b) $\frac{-\sqrt{2}+\sqrt{3}}{2}$
(c) $\sqrt{2} \times \sqrt{3}$
(d) $\sqrt{5}$
5. If $\mathbf{5}^{2 y}=\mathbf{2 5}$ then 5^{-y} is equal to
(a) $\frac{-1}{5}$
(b) $\frac{1}{50}$
(c) $\frac{1}{625}$
(d) $\frac{1}{5}$

Fill in the blanks:
6. $\sqrt{6} \times \sqrt{8}=$ \qquad
7. The decimal expansion of the number $\sqrt{3}$ is \qquad and \qquad
8. \qquad is a whole number but not a natural number.
9. $\sqrt[2]{(81)^{0.50}}=$ \qquad
10. Between two distinct rational number there lie \qquad rational numbers.
11. The sum and difference of rational and irrational number is always \qquad numbers.
12. Every rational number is a \qquad number.
13. Find a rational number between $\frac{-2}{3}$ and $\frac{1}{4}$.
14. Express $0 . \overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
15. Find the value of $0 . \overline{23}+0 . \overline{22}$ in the form $\frac{p}{q}$, where $p \& q$ are integres
and $q \neq 0$.
16. Find the value of x, if $5^{x-3} \cdot 3^{2 x-8}=225$
17. Find the value of $\left[\left(4-5(4-5)^{4}\right]^{3}\right.$
18. Write first five whole numbers in $\frac{p}{q}$ form, where p and q are integers
and $q \neq 0$.
19. Find two irrational numbers between $\sqrt{25}$ and $\sqrt{27}$.
20. Write two numbers whose decimal expansions are terminating.
21. Find the value of $(256)^{0.16} \times(256)^{0.09}$
22. Evaluate $\left(\frac{3}{5}\right)^{3} \times\left(\frac{5}{3}\right)^{5}$
23. What can be the maximum number of digits in the repeating block of digits in the decimal expansion of $\frac{5}{7}$.

Short Answer Type-I Questions (2 Marks)

24. Represent following on number line
(a) $\frac{-7}{5}$
(b) $\sqrt{3}$

IX - Mathematics
25. Find the value of $x, \sqrt[3]{2 x+3}=5$
26. Express the mixed recurring decimal $1 . \overline{27}$ in the form $\frac{p}{q}$.
27. Simplify $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{80}+\sqrt{48}-\sqrt{45}-\sqrt{27}}$
28. Which of the following rational numbers will have a terminating decimal expansion or a non-terminating repeating (recurring) decimal expansion?
(a) $\frac{135}{50}$
(b) $\frac{4}{11}$
(c) $\frac{5^{2} \times 3^{3}}{2 \times 5^{3} \times 27}$
(b) $\frac{55}{9}$
29. Classify the numbers as terminating decimal or non-terminating recurring decimal or non-terminating non-recurring decimals.
(a) 0.1666
(b) 0.27696
(c) 2.142857142857........
(d) $2.502500250002 \ldots . . .$.
(e) $4 . \overline{123456789}$

Also classify these numbers as rational and irrational numbers.
30. Classify the following numbers as rational or irrational numbers.
(a) $\frac{7 \sqrt{7}}{\sqrt{343}}$
(b) $5+2 \sqrt{23}-(\sqrt{25}+\sqrt{92})$
(c) $\sqrt{360}$
(d) $\frac{22}{7}$
(e) π

31. Solve

(a) Add $\sqrt{125}+2 \sqrt{27}$ and $-5 \sqrt{5}-\sqrt{3}$
(b) Multiply $(-3+\sqrt{5})$ and $(7+\sqrt{3})$
(c) Divide $2 \sqrt{216}-3 \sqrt{27}$ by 3

Short Answer Type-II Questions (3 Marks)

32. If $\frac{3+2 \sqrt{5}}{3-2 \sqrt{5}}=p+q \sqrt{5}$, then find the value of $11(p+q)$
33. Simplify $\frac{(25)^{5 / 2} \times(81)^{1 / 4}}{(125)^{2 / 3} \times(27)^{2 / 3} \times 8^{4 / 3}}$
34. If $32^{2 x-5}=4 \times 8^{x-5}$ then find the value of x.
35. Evaluate
(a) $\frac{2^{38}+2^{37}+2^{36}}{2^{39}+2^{38}+2^{37}}$
(b) $(9+\sqrt{2}-\sqrt{3})^{2}$
(c) $\left[5\left(8^{1 / 3}+27^{1 / 3}\right)^{7}\right]^{1 / 4}$
(d) $(6-\sqrt{2})(2+\sqrt{3})$
36. If $5^{2 x-1}-(25)^{x-1}=2500$ then find the value of x ?
37. If $\mathrm{x}=3-2 \sqrt{2}$, show that $\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)= \pm 2$
38. If $x y z=1$ then simplify
$\left(1+x+y^{-1}\right)^{-1}+\left(1+y+z^{-1}\right)^{-1}+\left(1+z+x^{-1}\right)^{-1}$
39. Find the value of x if
(a) $25^{2 x-3}=5^{2 x+3}$
(b) $(4)^{2 x-1}-(16)^{x-1}=384$

IX - Mathematics
40. Solve
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{9}}$
41. Express $0.6+0 . \overline{7}+0.4 \overline{7}$ in the form $\frac{p}{q}$, where p and q are integers
and $q \neq 0$.

Long Answer type Questions (5 marks)

42. Evaluate $\frac{64^{\frac{a}{6}}}{4^{a}} \times \frac{2^{2 a+1}}{2^{a-1}}$
43. Simplify $\frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{a-c}+x^{b-c}}$
44. Simplify $\left(\frac{x^{a}}{x^{-b}}\right)^{a-b} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b-c} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c-a}$
45. Show that $\frac{7 \sqrt{3}}{(\sqrt{10}+\sqrt{3})}-\frac{2 \sqrt{5}}{(\sqrt{6}+\sqrt{5})}-\frac{3 \sqrt{2}}{(\sqrt{15}+3 \sqrt{2})}=1$
46. Show that $a=\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}$ and $b=\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}$, then find the value of $a^{2}+b^{2}+a b$
47. If $x=9-4 \sqrt{5}$ then find
(a) $x+\frac{1}{x}$
(b) $x-\frac{1}{x}$
(c) $x^{2}+\frac{1}{x^{2}}$
(d) $x^{2}-\frac{1}{x^{2}}$
(e) $x^{3}+\frac{1}{x^{3}}$
(f) $x^{3}-\frac{1}{x^{3}}$
(g) $\sqrt{x}+\frac{1}{\sqrt{x}}$
(h) $\sqrt{x}-\frac{1}{\sqrt{x}}$
(i) $x+\frac{14}{x}$
48. If $P=5-2 \sqrt{6}$ find
(a) $P^{2}+\frac{1}{P^{2}}$
(b) $P^{2}-\frac{1}{P^{2}}$
(c) $P^{4}+\frac{1}{P^{4}}$
49. Find the value of $\frac{4}{(216)^{-2 / 3}}+\frac{1}{(256)^{-3 / 4}}+\frac{2}{(243)^{-1 / 5}}$
50. If $\frac{9^{n} \times 3^{2} \times\left(3^{-n / 2}\right)^{-2}-(27)^{n}}{3^{3 m} \times 2^{3}}=\frac{1}{729}$ then prove that $m-n=2$
51. If $x=2^{y}$ and $\frac{9 \times 3^{2 x}-3^{x} \times 3^{x-2}}{2}=360$. Find the value of y.
52. If $a=2, b=3$ then find the values of the following
(a) $\left(a^{b}+b^{a}\right)^{-1}$
(b) $\left(a^{a}+b^{b}\right)^{-1}$
53. If $a b+b c+c a=0$, find the value of $\frac{1}{a^{2}-b c}+\frac{1}{b^{2}-c a}+\frac{1}{c^{2}-a b}$

CHAPTER-1

NUMBER SYSTEM

 ANSWERS1. (c) 0
2. (d) $\sqrt{5}$
3. (c) $2-\sqrt{3}$
4. (a) $\frac{\sqrt{2}+\sqrt{3}}{2}$
5. (d) $\frac{1}{5}$
6. $4 \sqrt{3}$
7. Non-terminating and non-repeating
8. 0
9. 3
10. Infinite
11. Irrational
12. Real
13. Hint: $\frac{a+b}{2}$ or make denominators equal $\frac{1}{12}$: (other answer are also possible)
14. $\frac{7}{9}$
15. $\frac{5}{11}$
16. Hint: Compare powers

$$
x=5
$$

17. -1
18. $\frac{0}{1}, \frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{4}{1}$
19. $\sqrt{25}=5$
$\sqrt{27}=3 \sqrt{3}=3 \times 1.732=5.196$
Two irrational No. 5.012301234012345
5.1378424134876
(other answers are also possible)
20. $\frac{17}{5}, \frac{43}{10}$ (other answers are also possible)
21. 4
22. $\left(\frac{5}{3}\right)^{2}$
23. 6
24. Hint: cubing on both sides

$$
\begin{aligned}
(\sqrt[3]{2 x+3})^{3} & =5^{3} \\
2 x+3 & =125 \\
x & =61
\end{aligned}
$$

26. $\frac{14}{11}$
27. 1
28. (a) Terminating decimal
(b) Non-terminating but recurring decimal
(c) Hint: simplify it first

Terminating decimal
(d) Non-terminating but recurring decimal

IX - Mathematics
29. (a) Terminating decimal/Rational number
(b) Terminating decimal/Rational number
(c) Non-terminating but repeating/Rational number
(d) Non-terminating non-Repeating/Irrational number
(e) Non-terminating but Repeating/Rational number.
30. (a) Rational
(b) Rational
(c) Irrational
(d) Rational
(e) Irrational
31. (a) $5 \sqrt{3}$
(b) $-21-3 \sqrt{3}+7 \sqrt{5}+\sqrt{15}$
(c) $4-3 \sqrt{3}$
32. Hint: Rationalise the denominator

$$
\begin{aligned}
p & =\frac{-29}{11} \\
q & =\frac{-12}{11} \\
& -41
\end{aligned}
$$

33. Hint: $\frac{\left(5^{2}\right)^{5 / 2} \times\left(3^{4}\right)^{1 / 4}}{5^{2} \times 3^{2} \times 2^{4}}=\frac{5^{3}}{3 \times 2^{4}}=\frac{125}{48}$
34. Hint:

$$
\begin{aligned}
2^{5(2 x-5)} & =2^{2} \times 2^{3(x-5)} \\
2^{10 x-25} & =2^{3 x-15+2} \\
10 x-25 & =3 x-13 \\
x & =\frac{12}{7}
\end{aligned}
$$

35. (a) Hint: $\frac{2^{36}\left(2^{2}+2^{1}+1\right)}{2^{37}\left(2^{2}+2^{1}+1\right)}=\frac{1}{2}$
(b) Hint: $(9)^{2}+(\sqrt{2}-\sqrt{3})^{2}+2 \times 9(\sqrt{2}-\sqrt{3})=2(43-\sqrt{6}+9 \sqrt{2}-9 \sqrt{3})$
(c) 25
(d) $12+6 \sqrt{3}-2 \sqrt{2}-\sqrt{6}$
36. Hint:

$$
\begin{aligned}
5^{2 x-1}-5^{2(x-1)} & =5^{4} \times 2^{2} \\
5^{2 x-1} \frac{-5^{2 x-1}}{5} & =5^{4} \times 2^{2} \\
x & =3
\end{aligned}
$$

37. Hint:

$$
\begin{aligned}
& \left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}=x+\frac{1}{x}-2=4 \\
& \left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)= \pm 2
\end{aligned}
$$

38. Hint: replace

$$
\begin{aligned}
y & =\frac{1}{x z} \\
& =(1+x+x z)^{-1}+\left(1+\frac{1}{x z}+\frac{1}{z}\right)^{-1}+\left(1+z+\frac{1}{x}\right)^{-1} \\
& =\frac{1}{1+x+x z}+\left(\frac{x z+1+x}{x^{2}}\right)^{-1}+\left(\frac{x+x z+1}{x}\right)^{-1} \\
& =\frac{1}{1+x+x z}+\frac{x z}{1+x+x z}+\frac{x}{1+x+x z} \\
& =\frac{1+z x+x}{1+x+x z}=1
\end{aligned}
$$

39. (a) Hint:

$$
\begin{aligned}
5^{2(2 x-3)} & =5^{2 x+3} \\
x & =\frac{9}{2}
\end{aligned}
$$

(b) Hint:

$$
\begin{aligned}
2^{2(2 x-1)}-2^{4(x-1)} & =2^{7} \times 3 \\
2^{4 x-2}-2^{4 x-4} & =2^{7} \times 3 \\
2^{4 x-2}\left(1-2^{-2}\right) & =2^{7} \times 3 \\
x & =\frac{11}{4}
\end{aligned}
$$

40. Hint:

$$
\begin{aligned}
\frac{1}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}= & \frac{1-\sqrt{2}}{1-2}=-(1-\sqrt{2}) \\
= & \sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5} \\
& +\sqrt{7}-\sqrt{6}+\sqrt{8}-\sqrt{7}+\sqrt{9}-\sqrt{8} \\
= & \sqrt{9}-1=3-1=2
\end{aligned}
$$

41. $\frac{167}{90}$
42. 4
43. 1
44. 1
45. 1
46. Hint:

$$
\begin{aligned}
a & =13-2 \sqrt{42} \\
b & =13+2 \sqrt{42} \\
(a+b)^{2}-a b & =a^{2}+b^{2}+a b \\
a^{2}+b^{2}+a b & =(13-2 \sqrt{42}+13+2 \sqrt{42})^{2}-(13-2 \sqrt{42})(13+2 \sqrt{42}) \\
a^{2}+b^{2}+a b & =(26)^{2}-(169-168) \\
& =676-1=675 \\
\mathbf{1 5} & \text { IX - Mathematics }
\end{aligned}
$$

47. (a) 18
(b) $-8 \sqrt{5}$
(c) 322
(d) $-144 \sqrt{5}$
(e) Hint:

$$
\begin{aligned}
x^{3}+\frac{1}{x^{3}} & =\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right) \\
& =18^{3}-3 \times 18=5778
\end{aligned}
$$

(f) Hint:

$$
\begin{aligned}
x^{3}-\frac{1}{x^{3}} & =\left(x-\frac{1}{x}\right)^{3}+3\left(x-\frac{1}{x}\right) \\
& =(-8 \sqrt{5})^{3}+3 \times-8 \sqrt{5} \\
& =-2584 \sqrt{5}
\end{aligned}
$$

(g) $2 \sqrt{5}$
(h) 4
(i) $135+52 \sqrt{5}$
48. (a) 98
(b) Hint: $P^{2}-\frac{1}{P^{2}}=\left(P+\frac{1}{P}\right)\left(P-\frac{1}{P}\right)=-40 \sqrt{6}$
(c) Hint: $P^{4}+\frac{1}{P^{4}}=\left(P^{2}+\frac{1}{P^{2}}\right)^{2}-2=9602$
49. 214
50. Hint:

$$
\frac{3^{2 n} \times 3^{2} \times 3^{\frac{-n}{2} \times-2}-3^{3 n}}{3^{3 m} \times 2^{3}}=\frac{1}{729}
$$

$$
\begin{aligned}
\frac{3^{2 n+2+n}-3^{3 n}}{3^{3 m} \times 2^{3}} & =\frac{1}{729} \\
3^{3 n-3 m} & =3^{-6} \\
n-m & =-2 \\
\therefore \quad m-n & =2
\end{aligned}
$$

51. Hint:

$$
\begin{aligned}
\frac{3^{2} \times 3^{2 x}-3^{x} \times 3^{x-2}}{2} & =360 \\
\frac{3^{2 x}\left(3^{2}-3^{-2}\right)}{2} & =360 \\
3^{2 x} & =81 \\
x & =2 \\
y & =1
\end{aligned}
$$

52. (a) $\frac{1}{17}$
(b) $\frac{1}{31}$
53. Hint: $a b=-(b c+c a) ; b c=-(c a+a b) ; c a=-(a b+b c)$

$$
\begin{aligned}
& =\frac{1}{a^{2}+a c+a b}+\frac{1}{b^{2}+a b+b c}+\frac{1}{c^{2}+b c+c a} \\
& =\frac{1}{a(a+b+c)}+\frac{1}{b(a+b+c)}+\frac{1}{c(a+b+c)} \\
& =0
\end{aligned}
$$

CHAPTER-1

NUMBER SYSTEM PRACTICE TEST

1. Write one rational number and one irrational number.
2. If $p=5-2 \sqrt{6}$ then find the value of $\frac{1}{p}$.
3. Simplify $4 \sqrt{3}+3 \sqrt{48}-\frac{5}{2} \sqrt{12}$
4. If $(5)^{2 x-1}-(25)^{x-1}=2500$ then find the value of x.
5. Find the value of x and y

$$
\begin{equation*}
\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}=x-y \sqrt{77} \tag{3}
\end{equation*}
$$

6. Represent $(2+\sqrt{3})$ on number line
7. Simplify:

$$
\begin{equation*}
\frac{16 \times 2^{a+1}-4 \times 2^{a}}{16 \times 2^{a+2}-2 \times 2^{a+2}} \tag{3}
\end{equation*}
$$

8. Express the following in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$ $0 . \overline{4}+0.1 \overline{8}+0 . \overline{2}$

CHAPTER-2

POLYNOMIALS

MIND MAP

CHAPTER-2

Polynomials

KEY POINTS

Definition

A polynomial $p(x)$ in one variable x of degree n is an algebraic expression in x of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} 2^{n-2}+\ldots .+a_{2} x^{2}+a^{1} x+a_{0}$, where
(i) $a_{0}, a_{1}, a_{2}, \ldots a_{n}$ are constants and $a_{n} \neq 0$
(ii) $a_{0}, a_{1}, a_{2}, \ldots a_{n}$, are respectively the coefficients of $x^{0}, x^{1}, x^{2}, \ldots \ldots \ldots, x^{n}$ terms of the polynomial.
(iii) Each of $a_{n} x^{n}, a_{n-1} x^{n-1}, \mathrm{a}_{n-2} x^{n-2}$, \qquad $a_{2} x^{2}, a_{1} x_{1} a$ are called terms of the polynomial.
(iv) n is called the degree of the polynomial where n is a non-negative integer.

Zeros of Polynomial

For a polynomial $p(x)$ if $p(a)=0$, where a is a real number we say that ' a ' is a zero of the polynomial.

1. A polynomial having four or more than four terms does not have particular name. These are simply called polynomials.
2. A polynomial of degree five or more than five does not have any particular name. Such a polynomial is usually called a polynomial of degree five or six or ... etc.
3. The degree of zero polynomial is not defined or we can not determine the degree of zero polynomial.

Facts about Polynomial:

4. A polynomial of degree ' n ' can have at most n zeroes.
5. A non-zero constant polynomial has no-zero.
6. Every real number is a zero of the zero polynomial.

Very Short Answer type Questions (1 Mark)

1. The coefficient of x^{2} in the polynomial $4 x^{3}-7 x^{2}+2 x+1$ is :-
(a) 4
(b) 7
(c) -4
(d) -7
2. Which of the following is not a polynomial?
(a) $x+1$
(b) $\sqrt{x}+1$
(c) $x^{2}+1$
(d) $\left(\frac{1}{x}+1\right) x^{2}$
3. If $x=-1$ is a zero of $x^{3}-2 x^{2}+3 a x+5$, then value of a is :-
(a) 2
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) -5
4. If $(x+2)$ is a factor of $\boldsymbol{x}^{2}-k x+14$, then find the value of \boldsymbol{k} :-
(a) -9
(b) 9
(c) -2
(d) 14
5. When $p(x) x^{3}-6 x^{2}+2 x-4$ is divided by $x-2$ then remainder is :-
(a) 16
(b) 24
(c) -16
(d) -24
6. If the side of a square is $(x+2 y-z)$ units, then its area is \qquad .
7. The polynomial $x^{2}-a^{2}$ has \qquad zeroes.
8. A quadratic polynomial can have at most \qquad terms.
9. $(49)^{3}-(30)^{3}+$ \qquad $=3 \times 49 \times 30 \times 19$
10. $x^{3}-64$ is a polynomial of degree \qquad having \qquad terms.
11. Check whether $x=3$ is a zero of the polynomial $x^{3}-3 x^{2}+x-3$
12. If $p+q+r=9$, then find the value of $(3-p)^{3}+(3-q)^{3}+(3-r)^{3}$.
13. Find the remainder when $x^{3}+3 x^{2}+2 x$ is divided by x.
14. If $f(x)=x^{2}-3$, then find $f(1)+f(-1)$
15. Find the sum of coefficient of x^{2} and coefficient of x in the polynomial $3 x^{3}-4 x^{2}$ $+5 x+2$

Short Answer Type-I Questions (2 Marks)

16. Check whether $q(x)$ is a multiple of $r(x)$ or not.

Where $q(x)=2 x^{3}-11 x^{2}-4 x+5, r(x)=2 x+1$.
17. Show that $(x-5)$ is a factor of $x^{3}-3 x^{2}-4 x-30$.
18. Evaluate by using suitable identity: $(997)^{2}$
19. Find the zeroes of the polynomial $p(x)=x(x-2)(x+3)$
20. Find the remainder when $3 x^{2}-7 x-6$ is divided by $(x-3)$
21. Factorise: $8 x^{3}+\sqrt{27} y^{3}$
22. If $p(x)=x+9$, then find $p(x)+p(-x)$
23. Find the product without multiplying directly 106×94
24. The factors of $5 x^{2}-18 x+9$ are $(a x+b)$ and $(x+b)$. Find the values of a and b.
25. Find $p(1)+p(-1)+p(10)$ if $p(x)=x^{2}-3 x+2$
26. Find $(x-y)^{2}$ if $\frac{x}{y}+\frac{y}{x}=2$
27. Show that -1 is a zero of $3 x^{4}-x^{3}+3 x-1$.
28. Multiply $(x+1)(x-y)$

Short Answer Type-II Questins (3 Marks)

29. Factorise: $64 a^{2}+96 a b+36 b^{2}$
30. Facrotise: $x^{3}+6 x^{2}+11 x+6$
31. If $x^{2}+y^{2}=49$ and $x-y=3$, then find the value of $x^{3}-y^{3}$.
32. Simplify: $(5 a-2 b)\left(25 a^{2}+10 a b+4 a b^{2}\right)-(2 a+5 b)\left(4 a^{2}-10 a b+25 b^{2}\right)$
33. Find the sum of remainders when $x^{3}-3 x^{2}+4 x-4$ is divided by $(x-1)$ and $(x+2)$.
34. Find the product of $\left(p-\frac{1}{p}\right)\left(p+\frac{1}{p}\right)\left(p^{2}+\frac{1}{p^{2}}\right)\left(p^{4}+\frac{1}{p^{4}}\right)$
35. Factorise: $7 \sqrt{2} k^{2}-10 k-4 \sqrt{2}$
36. Simplify: $(3 x-4 y)^{3}-(3 x+4 y)^{3}$
37. Simplify: $(x+y+z)^{2}-(x-y-z)^{2}$.
38. Factorise: $125 x^{3}+8 y^{3}+z^{3}-30 x y z$
39. $x+2$ is a factor of polynomial $a x^{3}+b x^{2}+x-2$ and the remainder 4 is obtained on dividing this polynomial by $(x-2)$. Find the value of a and b.
40. If the polynomials $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+a$ leave the same remainder when divided by $(x-3)$, find the value of a.
41. If $\left(\frac{9}{10}\right)^{3}-\left(\frac{2}{5}\right)^{3}-\left(\frac{1}{2}\right)^{3}=\frac{x}{50}$, find x
42. If $(x-3)$ and $\left(x-\frac{1}{3}\right)$ are factors of the polynomial $p x^{2}+3 x+r$, show that $p=r$.

Long Answer type Questions (5 Marks)

43. A literacy campaign was organised by Class IX girl students under NSS. Students made $(x-5)$ rows and $(3 x-4)$ columns for the rally. Write the total number of students in the form of a polynomial.
44. (i) Using identity, find the value of $(-7)^{3}+(5)^{3}+(2)^{3}$.
(ii) Find dimensions of cuboid whose volume is given be the expression $4 x^{2}+14 x+6$
45. If $a+b+c=0$, find the value of $\frac{(b+c)^{2}}{b c}+\frac{(c+a)^{2}}{c a}+\frac{(a+b)^{2}}{a b}$
46. Simplify: $\frac{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}$
47. Factorize $(2 a-b-c)^{3}+(2 b-c-a)^{3}+(2 c-a-b)^{3}$
48. If the polynomial $4 x^{3}-16 x^{2}+a x+7$ is exactly divisible by $x-1$, then find the value of a. Hence factorise the polynomial.
49. If $\frac{x}{y}+\frac{y}{x}=-1$ where $x \neq 0, y \neq 0$ then find the value of $x^{3}-y^{3}$
50. Simplify: $\frac{155 \times 155+155 \times 55+55 \times 55}{155 \times 155 \times 155-55 \times 55 \times 55}$

CHAPTER-2

POLYNOMIAL

Answer

1. (d) -7
2. (b) $\sqrt{x}+1$
3. (b) $\frac{2}{3}$
4. (a) -9
5. (c) -16
6. $x^{2}+4 y^{2}+z^{2}+4 x y-4 y z-2 x z$
7. Two
8. Three
9. $(-19)^{3}$
10. 3,2
11. Yes
12. $p+q+r=9$

$$
\begin{aligned}
& (3-p)+(3-q)+(3-r)=0 \\
& \therefore(3-p)^{3}+(3-q)^{3}+(3-r)^{3} \\
& =3(3-p)(3-q)(3-r)
\end{aligned}
$$

13. 0
14. $f(1)+f(-1)$

$$
=(-2)+(-2)=-4
$$

15. $(-4)+(5)=1$
16. Since, $q\left(\frac{-1}{2}\right)=1 \neq 0$
$\therefore r(x)$ is not a multiple of $q(x)$.

IX - Mathematics
17. Put $x=5$ in given polynomial
18. 994009
19. $0,2,-3$
20. -18
21. $(2 x+\sqrt{3} y)\left(4 x^{2}-2 \sqrt{3} x y+3 y^{2}\right)$
22. 18
23. $(100+6)(100-6)=9964$
24. $a=5, b=-3$
25. 8
26. 0
28. $x^{2}-x y+x-y$
29. $(8 a+6 b)^{2}$
30. $(x+1)(x+2)(x+3)$
31. 207
32. $117 a^{3}-133 b^{3}$
33. -34
34. $p^{8}-\frac{1}{p^{8}}$
35. $(k-\sqrt{2})(7 \sqrt{2} k+4)$
36. $-128 y^{3}-216 x^{2} y$
37. $4 x y+4 x z$
38. $(5 x+2 y+z)\left(25 x^{2}+4 y^{2}+z^{2}-10 x y-2 y z-5 z x\right)$
39. $a=0, b=1$
40. $a=-1$
41. $x=27$, $\left\{\right.$ use, if $a+b+c=0$ then $\left.a^{3}+b^{3}+c^{3}=3 a b c\right\}$
43. $3 x^{2}-19 x+20$
44. (i) -210 , (ii) $2,(x+3),(2 x+1)$
45. 3
46. $(a+b)(b+c)(c+a)$
47. $3(2 a-b-c)(2 b-c-a)(2 c-a-b)$
48. $a=5,(x-1)(2 x+1)(2 x-7)$
49. 0
50. $\frac{(155)^{2}+155 \times 55+(55)^{2}}{(155)^{3}-(55)^{3}}=\frac{(155)^{3}-(55)^{3}}{(155-55)\left((155)^{3}-(55)^{3}\right)}$ $=\frac{1}{100}=0.01$

POLYNOMIALS

PRACTICE TEST

Time: 1 hr .

1. Show that $x=1$ is a zero of the polynomial $3 x^{3}-4 x^{2}+8 x-7$.
2. Find the value of the polynomial $2 x+5$ at $x=-3$.
3. Find the zeroes of the polynomial $x^{2}-4 x+3$.
4. If $x+y+z=6, x y+y z+z x=11$. Find the value of $x^{2}+y^{2}+z^{2}$.
5. If $3 x-4$ is a factor of the polynomial $p(x)=2 x^{3}-11 x^{2}+k x-20$, find the value of k.
6. Factorise: $a^{2}+b^{2}+2(a b+b c+c a)$
7. Factorise: $2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
8. Factorise:
(i) $4 x^{2}+20 x+25$
(ii) $6 x^{2}+7 x-3$

CHAPTER-3

CO-ORDINATE GEOMETRY
 MIND MAP

Key Points

- Co-ordinate Geometry is the branch of Mathematics in which we study the position of any object lying in a plane, called the Cartesian plane.
- In Cartesian system; there are two mutually perpendicular straight lines xx^{\prime} and yy' intersecting at origin O .
- These mutually perpendicular straight lines, known as x-axis and y-axis, divides the plane into four quadrants.
- The coordinates of a point is the position of the point in Cartesian plane and are determined by perpendicular distance from x-axis and y-axis.
- The perpendicular distance of a point from y-axis is called abscissa (x-coordinate) and from x-axis is called ordinate (y-coordinate).
- Any point in the Cartesian plane is shown by $P(a, b)$ where (a, b) are coordinates of point P.

abscissa (\boldsymbol{x})	ordinate (\boldsymbol{y})	Position of point
positive $(+$)	positive $(+)$	Quadrant I
positive $(+)$	negative $(-)$	Quadrant IV
negative $(-)$	negative $(-)$	Quadrant III
negative $(-)$	positive $(+)$	Quadrant II

- The coordinate of a point on x-axis is of the form $(x, 0)$ and on y-axis is of the form $(0, y)$.
- If x-coordinate of two or more points are same, then the line joining these points is parallel to y-axis.
- If y-coordinate of two or more points are same, then the line joining these points is parallel to x-axis.

NOTE: If a point lie on x-axis or y-axis then it does not lie in any quadrant.

- The mirror image of a point is just a reflection of this point about one of the axes.
Mirror image about x-axis: sign of abscissa remains same but sign of ordinate changes.
Mirror image about y-axis: sign of abscissa changes but sign of ordinate remains same.

Mirror image about origin: signs of both-abscissa and ordinate changes.

Very Short Answer Questions (1 mark)

1. The abscissa of a point is the distance of the point from
(a) x-axis
(b) y-axis
(c) origin
(d) None of these
2. The \boldsymbol{y}-coordinate of a point is the distance of that point from
(a) x-axis
(b) y-axis
(c) origin
(d) None of these
3. If both the coordinates of a point are negative then that point will lie in
(a) First quadrant
(b) Second quadrant
(c) Third quadrant
(d) Fourth quadrant
4. If abscissa of a point is zero then that point will lie
(a) on x-axis
(b) on y-axis
(c) at origin
(d) in Ist quadrant
5. If $x>0$ and $y<0$, then the point $(x,-y)$ lies in
(a) I quadrant
(b) II quadrant
(c) III quadrant
(d) IV quadrant
6. Point $(a, 0)$ lies
(a) on x-axis
(b) on y-axis
(c) in third quadrant
(d) in fourth quadrant
7. The signs of abscissa and ordinate of a point in the second quadrant are respectively.
(a),++
(b),--
(c),-+
(d),+-
8. The ordinate of a point is positive in
(a) I and IV quadrants
(b) I quadrant only
(c) I and II quadrants
(d) I and III quadrants
9. The point which lies on \boldsymbol{y}-axis at a distance of 10 units in the negative direction of y-axis is
(a) $(10,0)$
(b) $(0,10)$
(c) $(-10,0)$
(d) $(0,-10)$
10. The end points of a line lies in I quadrant and III quadrant. The line may pass through
(a) origin
(b) negative x -axis
(c) positive y-axis
(d) quadrant II
11. The point whose abscissa and ordinate have different signs will lie in
(a) I and II quadrants
(b) I and III quadrants
(c) II and III quadrants
(d) II and IV quadrants
12. Which of the point $P(0,3), Q(1,0), R(0,-1), S(-5,0), T(1,2)$ do not lie on x-axis?
(a) P and R only
(b) Q and S only
(c) P, R and T
(d) Q, S and T
13. If the coordinates of the points are $P(-2,3)$ and $Q(-3,5)$ then (abscissa of $P)-($ abscissa of $Q)$ is
(a) -5
(b) 1
(c) -1
(d) -2
14. Point $(1,1),(1,-1),(-1,1),(-1,-1)$
(a) lie in I quadrant
(b) lie in III quadrant
(c) lie in I and III quadrants
(d) do not lie in the same quadrant
15. The point of intersection of the coordinates axes is
(a) Abscissa
(b) Ordinate
(c) Quadrant
(d) Origin
16. The abscissa and ordinate of the origin are
(a) $(1,0)$
(b) $(1,1)$
(c) $(0,1)$
(d) $(0,0)$
17. The angle formed between the coordinate axes is
(a) Zero angle
(b) Right angle
(c) Acute angle
(d) Obtuse angle
18. The perpendicular distance of the point $p(-4,-3)$ from x-axis is
(a) -4 units
(b) -3 units
(c) 4 units
(d) 3 units
19. The perpendicular distance of the point $p(-7,2)$ from y-axis is
(a) -7 units
(b) 7 units
(c) 2 units
(d) -2 units
20. The distance of the point $p(3,4)$ from the origin is
(a) 3 units
(b) 4 units
(c) 7 units
(d) 5 units
21. Which of the points $A(-5,0), B(0,-3), C(3,0), D(0,4)$ are closer to the origin
(a) A
(b) B
(c) D
(d) Points B and C both
22. The mirror image of the point $(0,3)$ along y-axis is
(a) $(0,-3)$
(b) $(0,3)$
(c) $(3,0)$
(d) $(-3,0)$
23. The coordinate axes divide the plane into four parts, each part is called
\qquad -.
24. It the coordinates of a point are $(-2,5)$, then its ordinate is \qquad and its abscissa is \qquad .
25. The point $(200,-111)$ lies in the \qquad quadrant.
26. The abscissa of any point on the y-axis is \qquad .
27. The ordinate of any point on the x-axis is \qquad .
28. The points $(0,0),(0,4)$ and $(4,0)$ form a/an \qquad triangle.
29. If (x, y) represents a point and $x y>0$, then the point may lie in \qquad or \qquad quadrant.
30. The points with coordinates $(3,-1)$ and $(-1,3)$ are at \qquad (same/ different) positions of the coordinate plane.
31. If the ordinate of points is 7 and abscissa is -5 , then its coordinates are
\qquad _.
32. The coordinates of a point lying on x-axis having abscissa 5 are \qquad .
33. The co-ordinates of point describe the point in the place \qquad -
34. The coordinates of a point, which lies on negative x-axis at a distance of 6 units from y-axis, are \qquad .
35. If the coordinates of the points are $P(0,-1)$ and $Q(2,1)$ then (abscissa of $P)$ (abscissa of Q) is \qquad -
36. The measure of the angle between coordinate axes is \qquad .
37. In which quadrant do the given points lie.
(i) $(3,-2)$
(ii) $(17,-30)$
(iii) $(-2,5)$
(iv) $(-50,-20)$
(v) $(10,100)$
(vi) $(-81,80)$
38. On which axis do the given points lie:
(i) $(11,0)$
(ii) $(-11,0)$
(iii) $(0,-100)$
(iv) $(0,14)$
39. The abscissa and ordinate of a point A are -3 and -5 respectively then write down the coordinates of A.
40. Do $P(7,0)$ and $Q(0,7)$ represent the same point?
41. In which quadrant x coordinate is negative?
42. Name the figure formed when we plot the points $(0,0),(4,4)$ and $(0,4)$ on a graph paper.
43. In which quadrant, does the point $A(x, y)$ with values $x>0$ and $y>0$ exists?
44. Write the coordinates of the fourth vertex of a square when three of its vertices are given by $(1,2)(5,2)(5,-2)$.
45. If abscissa of any point is positive \& ordinate is negative then in which quadrant do the point lie?
46. Write the coordinates of point whose perpendicular distance from x-axis is 5 units \& perpendicular distance from y-axis is 3 units \& it lies in II quadrant.
47. In which quadrant will a point lie if its both the coordinates are positive?
48. Write the coordinates of the point at which two coordinate axes meet.
49. Write the coordinates of the point which lies at a distance of x-units from x-axis and y units from y-axis.
50. Find the coordinates of the point which lies on x-axis at a distance of 5 units from y-axis.
51. Find the coordinates of the point which lies on y-axis at a distance of 9 units from x -axis in the negative direction.
52. In which quadrant of a Cartesian plane the ordinate of a point will be positive and abscissa will be negative?
53. On which axis the point $A(-3,0)$ lies?
54. Which axis is parallel to the line joining the points $(2,4)$ and $(2,-5)$?
55. Find the image of the point $(2,3)$ about x-axis.
56. Find the mirror image of the point $(-5,6)$ about y-axis.
57. In which quadrant the mirror image of $(-1,-4)$ lie about y-axis?
58. A point is in II quadrant. In which quadrant will its mirror image lie along x -axis?

Short answer type-I questions (2 marks)

59. Find the co-ordinates of two points on x-axis and two points on y-axis which are at equal distance from the origin.
60. Name the quadrant in which the graph of point $A(x, y)$ lies when
(i) $x>0$ and $y>0$
(ii) $x<0$ and $y<0$
61. Find the coordinates of the vertices of a rectangular figure placed in III quadrant in the Cartesian plane with length p unit on x -axis and breadth q units on y -axis.
62. Write the coordinates of any two points on the line segment joining the points $A(4,-1)$ and $B(4,5)$.

Short answer type-II questions (3 marks)

63. If we plot the points $P(5,0), Q(5,5), R(-5,5)$ and $S(-5,0)$, which figure will we get? Name the axis of symmetry of this figure?
64. Find the coordinates of a point which is equidistant from the two points $(-4,0)$ and $(4,0)$. How many of such points are possible satisfying this condition?
65. A rectangular field is of length 10 units \& breadth 8 units. One of its vertex lie on the origin. The longer side is along x-axis and one of its vertices lie in first quadrant. Find all the vertices.
66. Name the figure obtained by joining the points $B(5,3), E(5,1), S(0,1)$ and $T(0,3)$. Also find the area of the figure.
67. Plot the point $P(-5,4)$ and from it draw $P M$ and $P N$ as perpendicular to x-axis and y-axis respectively. Write the coordinates of the points M and N.

IX - Mathematics

CHAPTER-3

CO-ORDINATE GEOMETRY

Hints and Solutions

1. (b) y-axis
2. (a) x-axis
3. (c) Third quadrant
4. (b) y-axis
5. (d) IV quadrant
6. (a) on x-axis
7. $(\mathrm{c})-,+$
8. (c) I and II quadrants
9. (d) $(0,-10)$
10. (a) origin
11. (d) II and IV quadrants
12. (c) P, R and T
13. (b) 1
14. (d) do not lie in same quadrant
15. (d) origin
16. (d) $(0,0)$
17. (b) Right angle
18. (d) 3 units
19. (b) 7 units
20. (d) 5 units
21. (d) points B and C both
22. (b) $(0,3)$
23. quadrant
24. $5,-2$
25. IV quadrant
26. 0
27. 0
28. isosceles
29. I or III
30. different
31. $(-5,7)$
32. $(5,0)$
33. uniquely
34. $(-6,0)$
35. -2
36. 90°
37. (i) \& (ii) IV quadrant
(iii) \& (vi) II quadrant
(iv) III quadrant
(v) I quadrant
38. (i) \& (ii) x-axis
(iii) \& (iv) y-axis
39. $(-3,-5)$
40. No because abscissa and ordinates are different for both the points.
41. II and III
42. Triangle
43. I quadrant
44. $(1,-2)$
45. IV quadrant
46. $(-3,5)$
47. I quadrant
48. $(0,0)$
49. (y, x)
50. $(5,0)$
51. $(0,-9)$
52. II quadrant
53. x-axis
54. y-axis
55. $(2,-3)$
56. $(5,6)$
57. IV quadrant
58. III quadrant
59. $(\pm 9,0),(0, \pm a)$ where a is any real number
60. (i) I quadrant
(ii) III quadrant
61. $(0,0),(-p, 0),(-p,-q),(0-q)$
62. Any two point with abscissa $=4$ and ordinate lying between -1 and 5 .
63. Rectangle, y-axis
64. Any point on y-axis, infinite
65. $(0,0),(10,0),(10,8),(0,8)$
66. Figure : Rectangle

Area : 10 sq. units.
67. $\mathrm{M}(-5,0)$
$\mathrm{N}(0,4)$

PRACTICE TEST COORDINATE GEOMETRY

Time: $\mathbf{1} \mathrm{hr}$.

M.M.: 20

1. In which quadrant, the point (x, y) will lie, where x is positive and y is negative number?
2. Write the coordinate of a point at a distance of 5 units from x-axis lying in II quadrant.
3. Find the value of x and y if:
(a) $(x-4,7)=(4,7)$
(b) $(1,2 y-3)=(1,7)$
4. What is the distance of a point $(7,-6)$ from x-axis and y-axis?
5. In which quadrant, do the following points lie?
(i) $(4,-2)$
(ii) $(-3,7)$
(iii) $(-1,-2)$
6. Write the mirror image of following points along x -axis.
$(-3,5),(2,0),(-4,-7)$
7. Consider the points $O(0,0), A(4,0)$ and $B(4,6)$. Find the length of $O A$ and $A B$. Find the coordinates of the fourth point C such that $O A B C$ forms a rectangle.
8. The base $A B$ of two equilateral triangles $A B C$ and $A B D$ with side $2 a$, lies along the x -axis such that the mid point of $A B$ is at the origin. Find the coordinates of two vertices C and D of the triangles. Which type of Quadrilateral in $A B C D$?

CHAPTER-4 LINEAR EQUATIONS IN TWO VARIABLES

Key points

- Linear equation in one variable: An equation which can be written in the form $a x+b=0$, where a, b are real numbers and $a \neq 0$ is called a linear equation in one variable.
- Linear equation in two variables: An equation which can be written in the form $a x+b y+c=0$, where a, b and c are real numbers and $a, b \neq 0$, is called a linear equation in two variables.
Linear equation in one variable has a unique solutions.
$a x+b=0 \Rightarrow x=-\frac{b}{a}$
- Linear equation in two variables has infinitely many solutions.
- The graph of every linear equation in two variables is a straight line.
- Every point on the line satisfies the equation of the line.
- Every solution of the equation is a point on the line. Thus, a linear equation in two variables is represented geometrically by a line whose points make up the collection of solutions of the equation.

Graph

- The pair of values of x and y which satisfies the given equation is called solution of the linear equation in two variables.

Example: $x+y=4$
Solutions of equation $x+y=4$ are $(0,4)(1,3)(2,2)(4,0)$ and many more.

Very Short Answer Questions (1 Mark)

1. Which of the following is not a linear equation?
(a) $3 x+3=5 x+2$
(b) $x^{2}+5=3 x-5$
(c) $\frac{7}{3} x-5=4 x-3$
(d) $(x+2)^{2}=x^{2}-8$
2. Which of the following is not a linear equation in two variables?
(a) $2 x+3 y=5$
(b) $3 t+2 s=6$
(c) $a x^{2}+b y=c$
(d) $a x+b y=c$
3. A linear equation in two variables has maximum
(a) Only one solution
(b) Two solutions
(c) Infinite solutions
(d) None of these
4. The graph of $a x+b y+c=0$ is
(a) a straight line parallel to x -axis
(b) a straight line parallel to y-axis
(c) a general straight line
(d) None of these
5. If $x=1, y=1$ is a solution of equation $9 a x+12 a y=63$, then the value of a is
(a) 3
(b) 0
(c) -3
(d) 4
6. The equation of \mathbf{x}-axis is
(a) $x=k$
(b) $x=0$
(c) $y=k$
(d) $y=0$
7. Any point on the line $\boldsymbol{y}=\boldsymbol{x}$ is of the form
(a) $(a, 0)$
(b) $(0, a)$
(c) (a, a)
(d) $(a,-a)$
8. The equation $\boldsymbol{x}=0$ represents -
(a) x -axis
(b) y-axis
(c) a line parallel to x-axis
(d) a line parallel to y-axis
9. Which of the linear equation has solution as $x=2, y=3$?
(a) $2 x+y=8$
(b) $x+2 y=8$
(c) $x+y=8$
(d) $-x+y=8$
10. The graph of $2 x+3 y=6$ is a line which meets the y-axis at the point.
(a) $(2,0)$
(b) $(3,0)$
(c) $(0,2)$
(d) $(0,3)$
11. At what point, the graph of $3 x+2 y=9$, cuts the y-axis?
12. Let y varies directly as x. If $y=15$ when $x=5$, then write a linear equation.
13. Write the point of intersection of the lines $x=2$ and $y=-3$
14. What is the distance of the point $(3,-7)$ from x-axis?
15. What is the distance of the point $(-5,-4)$ from y-axis?
16. Express the linear equation $\sqrt{2} x-4=5 y$ in the form of $a x+b y+c=0$ and thus indicate the values of a, b and c.
17. Express x in terms of y for the equation $3 x+4 y=7$.
18. Express y in the terms of x.

$$
3 y+5 x=9
$$

19. Point $(9,0)$ lie on which axis?
20. Find a solution of $x+y=5$ which lies on y-axis.
21. Express the equation $5 y=9$ as linear equation in two variables.
22. Write the linear equation which is parallel to x-axis and is at a distance of 2 units from the origin in upward direction.
23. Check whether $(1,-2)$ is a solution of $2 x-y=6$.
24. Check whether $x=2$ and $y=2$ is a solution of $2 x+y=6$.
25. How many solutions are there for equation $y=5 x+2$.
26. Find the value of K, if $x=-1$ and $y=1$ is a solution of equation $K x-2 y=0$
27. If the graphs of equation $2 x+K y=10 K$ intersects x-axis at point $(5,0)$, find the value of K.
28. The graph of the linear equation $4 x=6$ is parallel to which axis?
29. At what point the graph of $2 x-y=6$, cuts x-axis?
30. On which side of y-axis, $x+3=0$ lies?
31. On which side of x-axis, $2 y-1=0$ lies?

Fill in the blanks:

32. (a) The equation of a line parallel to x-axis is \qquad $=a$, where a is any non-zero real number.
(b) The equation of a line parallel to y-axis is \qquad $=a$, where a is any non-zero real number.
33. The graph of every linear equation in two variables is a \qquad .
34. An equation of the form $a x+b=0$, where a, b are real numbers and $a \neq 0$, in the variable x, geometrically represents \qquad .
35. The coefficient of x in the linear equation $2(x+y)-x=7$ is \qquad
36. State whether the following statements are true or false :-
(a) The linear equation $7 x+9 y=8$ has a unique solution
(b) All the points $(2,0),(-3,0),(4,2)$ lie on the x-axis
(c) The line parallel to y-axis at a distance of 5 units to the left of y-axis is given by the equation $x=-5$.
(d) The graph of every linear equation in two variables need not be a line.
(e) The graph of the linear equation $x+2 y=5$ passes through the point $(0,5)$

Short Answer Type-I Questions (2 marks)

37. Find any two solutions of equation
$2 x+y=x+5$
38. Find the value of P if $x=2, y=3$ is a solution of equation $5 x+3 P y=4 a$
39. If the points $A(3,5)$ and $B(1,4)$ lies on the graph of line $a x+b y=7$, find the value of a.
40. Write the coordinates of the point where the graph of the equation $5 x-2 y=10$ intersect both the axes.
41. Write the equations of two lines passing through $(3,10)$.
42. The cost of coloured paper is 7 more than $1 / 3$ of the cost of white paper. Write this statements in linear equation in two variables.
43. Draw the graph of equation $x+y=5$.
44. The graph of linear equation $2 x-y=6$ will pass through which quadrants(s).
45. How many solution of the equations $3 x-2=x-3$ are there on the
(i) Number line
(ii) Cartesian plane...
46. Find the points where the graph of $x+y=4$ meets line which is
(i) parallel to x-axis at 3 units from origin in positive direction of y-axis.
(ii) parallel to y-axis at 2 units on left of origin.

Short Answer Type-II Questions (3 marks)

47. If total number of legs in a herd of goats and hens is 40 . Represent this situation in the form of a linear equation in two variables.
48. Find the value of a and b, if the line $6 a x+b y=24$ passes through, $(2,0)$ and (1, 2)
49. Determine the point on the graph of the linear equation $2 x+5 y=19$ whose ordinate is $1 \frac{1}{2}$ times its abscissa.
50. Find the points where the graph of the following equation cuts the x -axis and y-axis $2 x=1-5 y$.
51. Write the equation of the line parallel to x-axis at a distance of 4 units above the origin.
52. If the points $A(4,6)$ and $B(1,3)$ lie on the graph of $a x+b y=8$ then find the value of a and b.
53. Find the value of ' a ' if $(1,-1)$ is the solution of the equation $2 x+a y=5$. Find two more solutions of the equation.
54. Find two solutions of the equation $4 x+5 y=28$. Check whether $(-2,10)$ is solution of the given equation.
55. Write the equation of line passing through $(3,-3)$ and $(6,-6)$.
56. If $x=3 k-2, y=2 k$ is a solution of equation $4 x-7 y+12=0$, then find the value of K.
57. If $(m-2,2 m+1)$ lies on equation $2 x+3 y-10=0$, find m.
58. $\mathrm{F}=(9 / 5) \mathrm{C}+32$, where F is temperature Fahrenheit and C is temperature in Celsius.
(i) If the temperature is $35^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit?
(ii) If the temperature is $30^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit?
59. Draw the graph of the linear equation $2 x+3 y=6$. Find out the coordinates of the points where the line intersets x -axis and y -axis.
60. Draw the graph for the linear equation $3 x+4 y=12$. If $x=8$, find the value of y with the help of graph.
61. Draw the graph of $y=x$ and $2 y=-5 x$ on the same graph.
62. Give the geometrical representation of $5 x+7=0$ as equation.
(i) in one variable
(ii) in two variables
63. Draw the graph of the linear equations $2 y-x=7$. With the help of graph check whether $x=3$ and $y=2$ is the solution of the equation?
64. Draw the graph of linear equation $3 x-y=4$. From the graph find the value of p and q if the graph passes through $(p,-4)$ and $(3, q)$
65. Draw the graph of equations $2 x+3 y=-5$ and $x+y=-1$ on the same graph. Find the co-ordinate of the point of intersection of two lines.
66. Show that the points $A(1,-1), B(2,6)$ and $C(0,-8)$ lie on the graph of the linear equation $7 x-y=8$.

Long answer type questions (5 Marks)

67. Write $3 y=8 x$ in the form of $a x+b y+c=0$. Write x in terms of y. Find any two solutions of the equation. How many solutions you can find out?
68. Rohan and Ramita of Class IX decided to collect $₹ 25$ for class cleanliness. Write it in linear equation in two variables. Also draw the graph.

IX - Mathematics
69. Sarika distributes chocolates on the occasion of children's Day. She gives 5 chocolates to each child and 20 chocolates to adults. If number of children is represented by ' x ' and total distributed chocolates as ' y '.
(i) Write it in the form of linear equation in two variables.
(ii) If she distributed 145 chocolates in total, find number of children?
70. Priyanka and Arti decided to donate $₹ 1600$ for the Army widows. Assuming Priyanka's share as ' x ' and Arti's share as ' y '.
(a) Form a linear equation in two variables.
(b) If Priyanka donates thrice the amount donated by Arti, then find out the amount donated by both.
71. Riya participates in Diwali Mela with her friends for the charity to centre of handicapped children. They donate $₹ 3600$ to the centre from the amount earned in Mela. If each girl donates ₹ 150 and each boy donates ₹ 200 .
(a) Form the linear equation in two variables.
(b) If number of girls are 8 , find number of boys.
72. Aftab is driving a car with uniform speed of $60 \mathrm{~km} / \mathrm{hr}$. Assuming total distance to be $y \mathrm{~km}$ and time taken as x hours, form a linear equation. Draw the graph. From the graph read the following:
(i) distance travelled in 90 minutes.
(ii) Time taken to cover a distance of 150 km .
73. The parking charges of a car in a private parking is $₹ 20$ for the first hour and ₹ 10 for subsequent hours. Taking total parking charges to be y and total parking time as x hours form a linear equation. Write it in standard form and indicate the values of a, b and c. Draw the graph also.
74. We know that $\mathrm{C}=2 \pi r$, taking $\pi=22 / 7$, circumference as y units, radius as x units, form a linear equation. Draw the graph. Check whether the graph passes through $(0,0)$. From the graph read the circumference when radius is 2.8 units.

CHAPTER-4

LINEAR EQUATIONS IN TWO VARIABLES

Answers

1. (b) $x^{2}+5=3 x-5$
2. (c) $a x^{2}+b y=c$
3. (c) Infinite solutions
4. (c) a general straight line
5. (a) 3
6. (d) $y=0$
7. (c) (a, a)
8. (b) y-axis
9. (b) $x+2 y=8$
10. (c) $(0,2)$
11. $(0,4.5)$
12. $y=3 x$
13. $(2,-3)$
14. 7 units
15. 5 units
16. $\sqrt{ } 2 x-5 y-4=0$
$a=\sqrt{ } 2, b=-5, c=-4$
17. $x=\frac{7-4 y}{3}$
18. $y=\frac{9-5 x}{3}$
19. x-axis
$20(0,5)$
20. $0 x+5 y=9$

IX - Mathematics
22. $y=2$
23. No
24. Yes
25. Infinitely many solutions
26. $K(-1)-2(1)=0$
$k=-2$
27. $2(5)+k(0)=10 k$
$k=1$
28. Parallel to y-axis
29. $(3,0)$
30. On left side
31. On right side
32. (a) y
(b) x
33. Straight line
34. a point on number line
35. 1
36. (a) F
(b) F
(c) T
(d) F
(e) F
37. $(1,4)(0,5)$ (or any other possible solutions)
38. As $x=2, y=3$ is a solution
$5(2)+3 p(3)=4 a$
$10+9 p=4 a$
$p=\frac{4 a-10}{9}$
39. $3 a+5 b=7 ; a+4 b=6$
$3(7-4 b)+5 b=7$
$b=2, a=-1$
40. Graph of $5 x-2 y=10$ will intersect x-axis when $y=0$ ie
$5 x-2(0)=10 \Rightarrow 5 x=10$
$x=2$ i.e pt. $(2,0)$
Similarly for y-axis put $x=0$ i.e.
$5(0)-2 y=10$
$y=-5$ i.e pt $(0,-5)$
41. $3 x-y+1=0, x+y=13$ (or any other possible equation)
42. Let the cost of coloured paper be ₹ x

Let the cost of white paper be ₹ y, then A / Q
$x=1 / 3 y+7$
or $3 x=y+21$
43. $x+y=5$

x	0	5	1
y	5	0	4

44. I, IV, III
45. (i) $3 x-2=x-3$
$\Rightarrow x=-\frac{1}{2}$
On number line only one solution i.e.,

(ii) On Cartesian plane infinitely many solutions i.e., $1 \cdot x+0 \cdot y=-\frac{1}{2}$

x	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
y	-1	0	1

(A line parallel to y-axis)
46. (i) $(1,3)$

(ii) $(-2,6)$

47. Let number of goats $=x$

Number of hens $=y$
$4 x+2 y=40$
or
$2 x+y=20$

IX - Mathematics
48. $6 a(2)+b(0)=24$

$$
\begin{aligned}
12 a & =24 \\
a & =2 \\
6(2)(1)+b(2) & =24 \\
12+2 b & =24 \\
2 b & =12 \\
b & =6
\end{aligned}
$$

49. Let required pt. be $\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{equation*}
A / Q, \mathrm{y}^{\prime}=1 \frac{1}{2} x^{\prime}-\frac{3}{2} x^{\prime} \tag{1}
\end{equation*}
$$

$\left(x^{\prime}, y^{\prime}\right)$ lies on graph of $2 x+5 y=19$

$$
\begin{equation*}
2 x^{\prime}+5 y^{\prime}=19 \tag{2}
\end{equation*}
$$

from (1) and (2)

$$
\begin{aligned}
2 x^{\prime}+5\left(\frac{3}{2} x^{\prime}\right) & =19 \\
4 x^{\prime}+15 x^{\prime} & =38 \Rightarrow x^{\prime}=2 \\
y^{\prime} & =\frac{3}{2} \times 2=3
\end{aligned}
$$

point will be $\left(x^{\prime}, y^{\prime}\right)$ ie $(2,3)$
50. cuts x-axis at $\left(\frac{1}{2}, 0\right)$, cuts y-axis at $\left(0, \frac{1}{5}\right)$
51. $y=4$
52. $4 a+6 b=8$

$$
\text { or } \quad 2 a+3 b=4
$$

$$
a+3 b=8
$$

After solving $\rightarrow \quad a=-4$ and $b=4$
53. $2(1)+a(-1)=5$

$$
\begin{aligned}
&-a=3 \\
& a=-3 \\
& 2 x-3 y=5, \text { two solutions are }(7,3) \text { and }(10,5) \\
& \quad \text { or any two solutions possible. }
\end{aligned}
$$

54. $(2,4) ;(7,0)$
[or any other possible solution]
$(-2,10)$
$4 x+5 y=28$

| L.H.S
 $4(-2)+5(10)$ R.H.S.
 $=-8+50=42$ 28 |
| :--- | :--- |

L.H.S. \neq R.H.S
$\Rightarrow(-2,10)$ is not a solution of equation $4 x+5 y=28$
55. $x+y=0$
56. $4[3 k-2]-7[2 k]+12=0$

$$
\begin{aligned}
& 12 k-8-14 k+12=0 \\
& k=2
\end{aligned}
$$

57. $2[m-2]+3[2 m+1]-10=0$

$$
\begin{aligned}
2 m-4+6 m+3-10 & =0 \\
m & =\frac{11}{8}
\end{aligned}
$$

58. (i) $F=\left(\frac{9}{5}\right) C+32$

$$
\text { when } C=35^{\circ}
$$

$$
F=\left(\frac{9}{5}\right)(35)+32
$$

$$
F=95^{\circ} \mathrm{F}
$$

(ii) $\quad F=\left(\frac{9}{5}\right)(30)+32$
$=9 \times 6+32$
$=86^{\circ} \mathrm{F}$
59. $2 x+3 y=6$

x -axis co-ordinates $(3,0) ; y$-axis co-ordinates $(0,2)$
60. $y=-3$
62. $x=\frac{-7}{5}$ or $x=-1.4$

(ii)

63. No
64. Graph of $3 x-y=4$ passes through $(p,-4)$
$\Rightarrow(p,-4)$ lies on line of graph of
$3 x-y=4$, when $y=-4, x=0$
$\Rightarrow p=0$
Similarly $(3, q)$ lies on this line when $x=3, y=5$
$\Rightarrow q=5$
65. $2 x+3 y=-5$
$\Rightarrow x=\frac{-5-3 y}{2}$

x	-2.5	-4	-1
y	0	1	-1

$x+y=-1$

x	0	-1	1
y	-1	0	-2

Point of intersection is $(2,-3)$
67. $8 x-3 y+0=0 ; x=\frac{3 y}{8}$
$(0,0)(3,8)$
Infinitely many solutions.
68. $x+y=25$ [where x-Rohan's collection and y-Ramita's collection
69. (i) $5 x+20=y$
(ii) 25
70. (a) $x+y=1600$
(b) Priyanka $=₹ 1200[\because x=3 y]$
Arti = ₹400
71. (a) $150 x+200 y=3600$
(b) Number of boys $=12$
72. Using speed $=\frac{\text { distance }}{\text { time }}$
$y=60 x$
(i) $90 \mathrm{~km} \quad\left[\because x=90 \mathrm{~min}=\frac{90}{60} \mathrm{hr}=\frac{3}{2} \mathrm{hr}\right]$
(ii) 2 hours 30 min .
73. $20+10(x-1)=y$
$20+10 x-10=y$
$10 x-y+10=0$
$a=10, b=-1, c=10$
74. $y=2 \pi x$
yes
when $\quad r=2.8$ units
$c=17.6$ units

Chapter-4
 Linear Equations in Two Variables
 Practice Test

Time: $\mathbf{1} \mathbf{h r}$.
M.M.: 20

1. The graph of linear equation $2 y=5$ is parallel to which axis?
2. Write the linear equation of the graph which is parallel to y-axis and is at a distance 3 units on left from the origin
3. Find the value of a and b if the line $5 b x-3 a y=30$ passes through $(-1,0)$ and $(0,-3)$
4. Write two linear equations passing through the points $(2,-3)$
5. Write the linear equations $x+\sqrt{3} y=4$ in the form of $a x+b y+c=0$ and hence write the values of a, b and c. Write also x in terms of y
6. Find the solutions of linear equation $2 x+y=4$ which represents a point on/ which
(i) x -axis
(ii) y-axis
(iii) is at 3 unit perpendicular distance above x -axis
7. Give the geometrical representation of $2 x+5=0$ as a linear equation in (3)
(a) one variable
(b) two variables
8. A taxi charges $₹ 15$ for first kilometer and $₹ 8$ each for every subsequent kilometer. For a distance of $x \mathrm{~km}$, an amount of ₹y is paid. Write the linear equation representing the above information and draw the graph.

Chapter-5
 INTRODUCTION TO EUCLID'S GEOMETRY

Key points

- Introduction: Euclidean geometry, which is taught today is named after Euclid - he is known as "the father of geometry". Euclid also studied and contributed in other areas of mathematics, including number theory and astronomy.
- Axiom or Postulates: Axiom or Postulates are the assumptions which are obvious universal truths. They are not proved.
- Theorems: Theorems are statements which are proved, using definitions, axioms, previously proved statements and deductive reasoning.

Some of Euclids Axioms

1. Things which are equal to the same thing are equal to one another.
2. If equals are added to equals, the whole are equal.
3. If equals are subtracted from equals, the remainders are equal.
4. Things which coincide with one another are equal to one another.
5. The whole is greater than the part.
6. Things which are double of the same things are equal to one another
7. Things which are halves of the same things are equal to one another.

Euclid's Postulates and Definitions

- Postulates 1: A straight line may be drawn from any one point to any other points.
- Postulate 2: A terminated line can be produced indefinitely.
- Postulate 3: A circle can be drawn with any centre and any radius.
- Postulate 4: All right angles are equal to one-another.
- Postulate 5: If a straight line falling on two straight line makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produces indefinitely, meet on that side on which the sum of angles is less than two right angles.

Definitions

1. A Point is that which has no part.
2. A line is breadthless length.
3. The ends of a line are points
4. A straight line is a line which lies evenly with the points on it self.
5. A surface is that which has length and breadth only.
6. The edges of a surface are lines.
7. A plane surface is a surface which lies evenly with the straight lines on it self.

Very Short Answer type Questions (1 Marks)

1. Through two points:
(a) A unique line can be drawn
(b) No line can be drawn
(c) Two lines can be drawn
(d) More than two lines can be drawn
2. Euclid arranged all known work in the field of mathematics in his treatise called:
(a) Elements
(b) Axioms
(c) Theorems
(d) Postulates
3. Things which are double of the same things are:
(a) Halves of the same thing
(b) Double of the same thing
(c) Equals
(d) Four times of the same thing
4. A mathematical statement whose truth has been logically established is called:
(a) An Axiom
(b) A postulate
(c) A Theorem
(d) None of the above
5. Two lines having a common point are called:
(a) parallel lines
(b) intersecting lines
(c) coincident
(d) None of the above
6. A proof is required for \qquad (Postulate, Axioms, Theorem)
7. The number of line segments determined by three collinear points is \qquad (Two, three, only one)
8. Euclid stated that if Equals are subtracted from equal then the remainders are equal in the form of \qquad (an axiom, a definition, a postulate)
9. A point has \qquad dimensions.
10. There are \qquad number of Euclid's postulates.
11. Write the number of dimensions, that a surface contain.
12. In given figure $A B=C D$ then $A C$ and $B D$ are equal or not?

13. How many lines can pass through a single point?
14. Write Euclid's fifth postulate.
15. If $a+b=15$ and $a+b+c=15+c$
which axiom of Euclid does the statement illustrate?

Short Answer type-I Questions (2 Marks)

16. If $x+y=10$ and $x=z$ then show that $z+y=10$
17. In given figure $A X=A Y, A B=A C$ show that $B X=C Y$

59
18. In the given figure $\angle A B C=\angle A C B, \angle 3=\angle 4$ show that $\angle 1=\angle 2$

19. In the given figure if $A D=C B$ then prove that $A C=B D$

20. Solve the equation $x-10=15$, state which axiom do you use here.
21. In the given figure if $A M=\frac{1}{2} A B, A N=\frac{1}{2} A C$ and $A M=A N$ then show that $A B=A C$

22. In the given figure $A C=D C, C B=C E$ then show that $A B=D E$

23. In figure, A and B are centres of the two intersecting circles, which intersect at C. Prove that $A B=A C=B C$

24. Prove that every line segment has one and only one mid point.
25. Kartik and Himank have the same weight. If they each gain weight by 3 kg how will their new weight be compared? State Euclid's axiom used.

Short Answer type-II Questions (3 Marks)

26. In the given figure $\angle 1=\angle 2$ and $\angle 2=\angle 3$ then show that $\angle 1=\angle 3$

27. In the given figure $A B=B C, M$ is the mid point of $A B$ and N is the mid-point of $B C$. Show that $A M=N C$

28. In the given figure $P R=R S$ and $R Q=R T$. Show that $P Q=S T$ and write the Euclid's axiom to supports this.

29. An equilateral triangle is a polygon made up of three line segments out of which two line segments are equal to the third one and all the angles are 60° each.
Can you justify that all the sides and all the angles are equal in equilateral triangle?
30. Ram and Shyam are two students of class IX. They given equal donation to a blind school in the month of March. In April each student double their donation.
(a) compare their donation in April.
(b) which mathematical concept have been covered in this question?

CHAPTER-5
 INTRODUCTION TO EUCLID'S GEOMETRY Answers

1. (a) A unique line can be drawn
2. (a) Elements
3. (c) Equals
4. (a) An axiom
5. (b) Intersecting lines
6. Theorem
7. only one
8. An axiom
9. Zero
10. Five
11. Two
12. Equal
13. Infinite
14. If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines if produced indefinitely, meet on that side on which the sum of angles is less than two right angles.
15. Second axiom
16. Given

$$
\begin{equation*}
x+y=10 \tag{1}
\end{equation*}
$$

and $\quad x=z$
on subtracting y from both sides, of $\mathrm{eq}^{\mathrm{n}}(1)$

$$
\begin{aligned}
x+y-y & =10-y[\text { by axiom } 3] \\
z & =10-y[\text { from eq } 2]
\end{aligned}
$$

on adding y both sides, we get

$$
\begin{aligned}
& z+y=10-y+y[\text { by axiom } 2] \\
& z+y=10
\end{aligned}
$$

17. $A B=A C$
$A X=A Y, A Y$
According to Euclid's axiom (3), if equals are subtracted from equals then remainders are also equal
Subtracting equation (2) from equation (1)

$$
\begin{aligned}
A B-A X & =A C-A Y \\
B X & =C Y
\end{aligned}
$$

(Hence proved)
18. $\angle A B C=\angle A C B$

$$
\begin{equation*}
\angle 4=\angle 3 \tag{1}
\end{equation*}
$$

$\mathrm{eq}^{n}(1)-\mathrm{eq}^{n}(2)$

$$
\begin{aligned}
\angle A B C & -\angle 4=\angle A C B-\angle 3 \quad \text { [using axiom 3] } \\
\angle 1 & =\angle 2
\end{aligned}
$$

19. $A D=C B$

$$
A C+C D=C D+D B
$$

on subtracting CD from both sides

$$
\begin{aligned}
A C+C D-C D & =C D+D B-C D \quad \text { (using axiom 3) } \\
A C & =D B
\end{aligned}
$$

20. $x-10=15$

Adding 10 both sides

$$
\begin{aligned}
x-10+10 & =15+10 \\
x & =25
\end{aligned}
$$

21. Given; $A M=\frac{1}{2} A B$

$$
\begin{align*}
& A N=\frac{1}{2} A C \tag{ii}\\
& A M=A N
\end{align*}
$$

from eqns (i), (ii) \& (iii), we get

$$
\begin{aligned}
\frac{1}{2} A B & =\frac{1}{2} A C \\
A B & =A C
\end{aligned}
$$

[by axiom 7]
22. $A C=D C$
$C B=C E$
By Euclid's axiom 2
If two equals are aded to equals, then the wholes are equal.
Adding eq ${ }^{\mathrm{n}}$ (1) and eq^{n} (2)

$$
\begin{aligned}
A C+C B & =D C+C E \\
A B & =D E
\end{aligned}
$$

23. $A B=A C$
--- (1) [Radius of the same circle]
$B C=A B$
--- (2) [Radius of the same circle]
from eq ${ }^{\mathrm{n}}$ (1) and eqn (2)

$$
A B=A C=B C[\text { by axiom } 1]
$$

24. We have C as the mid point of the line segment $A B$, so $A C=B C$

Let there are two mid-point $C \& C^{\prime}$ of $A B$

Then, $\quad A C=\frac{1}{2} A B \quad A C^{\prime}=\frac{1}{2} A B$

$$
\Rightarrow A C=A C^{\prime} \quad[\text { by axiom } 1]
$$

which is possible only when C coincider C^{\prime}, so point C lies on C^{\prime}.
25. Kartik's weight $=$ Himank's weight

Kartik's weight $+3 \mathrm{~kg}=$ Himank's weight $+3 \mathrm{~kg} \quad$ [by axiom 2]
Their new weight will be equals By Euclid's second axiom. If equals are added to equals then wholes are equal.
26. $\angle 1=\angle 2$
$\angle 2=\angle 3$
from equation (1) and (2)
$\angle 1=\angle 3 \quad[$ By axiom 1]
27. $A B=B C$

$$
\begin{aligned}
A M+B M & =B N+C N \\
2 A M & =2 C N
\end{aligned}
$$

[$\mathrm{M} \& \mathrm{~N}$ are mid-point of $\mathrm{AB} \& \mathrm{BC}$ respectively]

$$
\begin{equation*}
A M=C N \quad[\text { By Euclid's axiom 6] } \tag{1}
\end{equation*}
$$

28. $P R=R S$
$R Q=R T$
Adding equation (1) and (2)

$$
\begin{aligned}
P R+R Q & =R S+R T \\
P Q & =S T \quad[\text { By axiom 2] }
\end{aligned}
$$

29.

$$
\begin{array}{rlr}
& a=b \text { and } b=c \\
\Rightarrow \quad & a=b=c \quad[\text { By axiom 1] }
\end{array}
$$

All sides of triangle are equal since all the angles are of 60° in an equilateral triangle so they must be equal to one another.
30. Ram's donation in March $=$ Shyam's donation in March

Ram's donation in April $=2 \times$ Ram's donation in March
Shyam's donation in April $=2 \times$ Shyam's donation in March
Using equation (1), (2) \& (3)
\Rightarrow Ram's donation in April = Shyam's donation in April [using axiom 6]

Practice Test

Introduction to Euclid's Geometry
Time: $1 \mathbf{h r}$.
M.M. 20

1. How many line segments can be determined by three collinear points.
2. How many lines can pass through a given point?
3. State Euclid's first postulate.
4. Solve the equation $x+3=10$ and state the Euclid's axiom used
5. If a point C lies between two points A and B such that $A C=B C$ then prove that $A C=\frac{1}{2} A B$. Explain by drawing the figure.
6. It is known that $x+y=10$, then $x+y+z=10+z$. State the Euclid's axiom that illustrates the statement.
7. State Euclid's fifth postulate, explain it and compare it with version of parallel lines
8. In the figure $P Q=R S, A$ and B are points on $P Q$ and $R S$ such that $A P=\frac{1}{3}$ $P Q$ and $R B=\frac{1}{3} R S$ show that $A P=R B$. State which axiom you use here. Also give two more axioms other than the axiom used in the above situation. (5)

CHAPTER-6
LINES AND ANGLES
MIND MAP

IX - Mathematics

Key points

- Line is a collection of points which has only length, neither breadth nor thickness.
- Line Segment: A part or portion of a line with two end points.
- Ray: A part of a line with one end point.
- Collinear points: Three or more points lying on the same line.
- Non-Collinear Points: Three or more points which do not lie on same line.
- Angle: An angle is formed when two rays originate from the same end point. The rays making angle are called the arms and the end point is the vertex.

- Acute Angle: An angle measure between 0° and 90°
- Right angle: Angle exactly equal to 90°
- Obtuse angle: An angle greater than 90° but less than 180°
- Straight angle: An angle exactly equal to 180°
- Reflex angle: An angle greater than 180° but less than 90°
- Complimentary angles: A pair of angles whose sum is 90°
- Supplementary angle: A pair of angles whose sum is 180°
- Complete angle: An angle whose measure is 360°
- Adjacent angles: Two angles are adjacent if
(i) they have a common vertex,
(ii) a common arm,
(iii) their non common arms are on opposite side of common arm.
- Linear pair of angle: A pair of adjacent angles whose sum is 180°

$\angle A O B$ and $\angle C O B$ are forming linear pair.
- Vertically opposite angles: Angles formed by two intersecting lines on opposite side of the point of intersection.

- Intersecting lines: Two lines are said to be intersecting when the perpendicular distance between the two lines is not same every where. They intersect at some point.
- Non Intersecting lines: Two lines are said to be non-intersecting lines when the perpendicular distance between them is same every where. They do not intersect. If these lines are in the same plane these are known as Parallel lines.
- Transversal line: In the given figure $l \| m$ and t is transversal then
(a)
$\left.\begin{array}{l}\angle 1=\angle 3 \\ \angle 2=\angle 4 \\ \angle 5=\angle 7 \\ \angle 6=\angle 8\end{array}\right]$ Vertically opposite angle

(c) $\left.\begin{array}{l}\angle 3=\angle 5 \\ \angle 4=\angle 6\end{array}\right]$ Alternate Interior angle
(d) $\left.\begin{array}{l}\angle 2=\angle 8 \\ \angle 1=\angle 7\end{array}\right]$ Alternate Exterior angle
(e) $\left.\begin{array}{l}\angle 3=\angle 6=180^{\circ} \\ \angle 4=\angle 5=180^{\circ}\end{array}\right]$ Angles on the same sides of a transversal are supplementary.
$\angle 3, \angle 6$ and $\angle 4, \angle 5$ are called co-interior angles or allied angles or consecutive interior angles.
- Sum of all interior angles of a triangle is 180°.
- Two lines which are parallel to the third line are also parallel to each other.

Very Short Answer Questions (1 mark)

1. If an angle is equal to its complement, then the angle is
(a) 90°
(b) 0°
(c) 48°
(d) 45°
2. In the given fig. for what value of $x+y, A B C$ will be a straight line?
(a) 90°
(b) 180°
(c) 360°
(d) 270°

3. In fig. $\angle A O C$ and $\angle B O C$ form a linear pair. Determine the value of x
(a) 30°
(b) 150°
(c) 15°
(d) 75°

4. The reflex angle of 110° is
(a) 70°
(b) 90°
(c) 250°
(d) 190°
5. One of the angles of a pair of supplementary angle is 10° more than its supplement, the angles are:
(a) $90^{\circ}, 90^{\circ}$
(b) $86^{\circ}, 94^{\circ}$
(c) $85^{\circ}, 95^{\circ}$
(d) $42.5^{\circ}, 47.5^{\circ}$
6. If three or more points does not lie on the same straight line, the points are called
(a) Concurrent points
(b) Collinear points
(c) Non-collinear points
(d) Adjacent point
7. If angles \boldsymbol{x} and \boldsymbol{y} form a linear pair and $\boldsymbol{x}-2 \boldsymbol{y}=30^{\circ}$, then the value of \boldsymbol{y} is
(a) 50°
(b) 110°
(c) 210°
(d) 60°
8. In the figure, $A B$ is a straight line, then the value of $(a+b)$ is
(a) 0°
(b) 90°
(c) 180°
(d) 60°

9. If $\angle A O C=\mathbf{5 0}{ }^{\circ}$ then the value of $\angle B O D$ is
(a) 50°
(b) 40°
(c) 130°
(d) 25°

10. If two parallel lines are intersected by a transversal, then the interior angles on the same side of transversal are
(a) equal
(b) Adjacent
(c) supplementary
(d) complementary
11. In figure, $\boldsymbol{l} \| \boldsymbol{m}$ value of x is \qquad
(a) 70°
(b) 35°
(c) 210°
(d) 110°

12. Three parallel lines intersect at \qquad points
(a) one
(b) two
(c) three
(d) zero
13. If one angle of \boldsymbol{a} linear pair is acute, then the other angle will be
(a) right angle
(b) obtuse angle
(c) acute angle
(d) straight angle
14. In the given figure, find the value of \boldsymbol{y}
(a) 18°
(b) 9°
(c) 30°
(d) 36°

15. A ray has only \qquad end point.
16. A line segment has a \qquad length.
17. If two lines are non-intersecting, then they will be \qquad .
18. An angle whose measure is more than 0° but less than 90°, is called an
\qquad angle.
19. A straight angle has \qquad right angles.
20. An angle whose measure is more than 180° but less than 360° is called
\qquad angle.
21. If an angle is equal to its supplement, then its measure is \qquad .
22. In the given figure, identify group of collinear points from (P, Q, R) and (A, B, C)

23. In the given figure, write the name of line segment whose one end point is B.

24. In the given figure, name the vertex of the angle.

25. In the above figure, name the two arms of the angle.
26. Which type of angle is formed in the given figure

Short Answer type-I Questions (2 Marks)

27. In the given figure $P O Q$ is a straight line and $O M$ and $O N$ are two rays. The three adjacent angles so formed are consecutive numbers. Find the value of x.

28. If angle x and y form linear pair and twice of x is 30° less than y, then find the value of x and y.

29. One of the angles of a pair of supplementary angles is 2° more than its supplement. Find the angles.
30. In the given figure $A B$ and $C D$ are two straight lines intersecting at O and $O P$ is a ray. What is the measure of $\angle A O D$? Also find the value of x.

31. If the difference between two supplementary angles is 40°, then find smaller angle.
32. Find the angle which is four times more than its complement.
33. Find the value of x in the given figure.

34. In the given figure, three straight lines $A B, C D$ and $E F$ intersect at point O. Find the measure of $\angle B O C$.

35. In the given figure, $A B \| D C$ and $A D \| B C$. Prove that $\angle D A B=\angle D C B$.

36. In the given figure, if $l \| m$ then what is the value of x.

Short Answer Type-II Questions (3 marks)

37. By contributing money, 5 friends bought pizza. They want to divide equally among themselves. But one of them was given double share as he was very hungry. Find the angle of the piece of pizza each received.
38. Prove that if two lines intersect then vertically opposite angles are equal.
39. In the figure, choose the pair of lines which are parallel. Give reasons also.

40. If one of the angle of two intersecting lines is right angle then prove that other three angles will also be right angles.
41. $A B$ and $C D$ are intersecting lines. $O D$ is bisector of $\angle B O Y$. Find x.

42. In the given figure $Q P \| M L$, find the value of x.

43. In the given figure $l \| m$ and n is the transversal, find x.

44. Two lines are respectively perpendicular to two parallel lines show that they are parallel to each other.
45. Prove that the bisectors of the angles of a linear pair form right angle.
46. If two complementary angles are such that two times the measure of one is equal to three times the measure of the other. Find the measure of larger angle.

Long Answer Questions (5 Marks)

47. In the figure, two straight lines $P Q$ and $R S$ intersect each other at point O. If $\angle P O T=60^{\circ}$. Find the value of a, b and c.

48. In figure, lines $m \| n$ and angles 1 and 2 are in the ratio $3: 2$. Find all the angles

49. In figure l, m and n are parallel lines intersected by a transversal p at x, y and z respectively. Find $\angle 1, \angle 2, \angle 3$ and $\angle 4$.

50. If the arms of one angle are respectively parallel to the arms of another angle, then show that the two angles are either equal or supplementary.
51. In the given figure, $A B \| C D$. Prove that $p+q-r=180^{\circ}$

Chapter-6

Lines and Angles

Answers

1. (d) 45°
2. (b) 180°
3. (a) 30°
4. (c) 250°
5. (c) $85^{\circ}, 95^{\circ}$
6. (c) Non-collinear points
7. (a) 50°
8. (b) 90°
9. (a) 50°
10. (c) Supplementary
11. (d) 110°
12. (d) zero
13. (b) obtuse
14. (a) 18°
15. one
16. Definite
17. parallel
18. Acute
19. Two
20. Reflex
21. 90°
22. P, Q, R
23. $\overline{\mathrm{BA}}$
24. P
25. $P Q, P R$
26. Right angle
27. 59°
28. $y-2 x=30^{\circ}$
$x=50^{\circ}, y=130^{\circ}$
29. $89^{\circ}, 91^{\circ}$
30. $\angle A O D=140^{\circ}, x=32^{\circ}$
31. 70°
32. 72°
33. 115°
34. 152°
35. Hint: Use the property that sum of interior angles on the same side of transversal are supplementary
36. 30°
37. 4 equal pieces $=60^{\circ}$, one double piece $=120^{\circ}$
38. Hint: $l \| m$ because sum of interior angles on the same side of transversal is 180°.
39. $\angle 1+\angle 2=180^{\circ}$ (linear pair)
$\Rightarrow \angle 2=90^{\circ}$
$\angle 1=\angle 3$ (Vertically
$\angle 2=\angle 4\}$ opposite angles)
$\Rightarrow \angle 3=\angle 4=90^{\circ}$
40. $x=15^{\circ}$
41. Draw $B D\|L M \& A C\| L M \& L M \| P Q$
$\angle P A C=\angle Q P A=15^{\circ}$ (Alternate interior angles)

$$
\begin{aligned}
\therefore \quad & \angle C A B=20^{\circ} \\
& x=30^{\circ}
\end{aligned}
$$

43. $3 y=2 y+25^{\circ}$ (Alternate interior angles)

$x+15^{\circ}=3 y \quad$ (Corresponding angles)
$x=60^{\circ}$
44. Given: $\angle A B E$ and $\angle E B C$ make linear pair $B F$ and $B D$ are bisectors of $\angle A B E$ and $\angle E B C$ respectively.

$$
\begin{aligned}
\therefore \quad & \angle 1=\angle 2 \\
& \angle 3=\angle 4 \\
& \angle F B D=90^{\circ}
\end{aligned}
$$

46. $2 x=3(90-x)$

$\Rightarrow x=54^{\circ}$
47. $5 b+60^{\circ}=180^{\circ}$ (linear pair)
$\Rightarrow b=24^{\circ}$
$a=4 b$ (vertically opp. \angle s)
$\Rightarrow a=96^{\circ}$
$60^{\circ}+b=2 c$ (vertically opp. $\angle \mathrm{s}$)
$\Rightarrow c=42^{\circ}$
48. $\angle 1=\angle 5=\angle 3=\angle 7=108^{\circ}$
$\angle 2=\angle 6=\angle 4=\angle 8=72^{\circ}$
49. $\angle 1=\angle 2=\angle 4=130^{\circ}$
$\angle 3=50^{\circ}$
50. Case-1

Case-2

CHAPTER-6
 LINES AND ANGLES
 PRACTICE TEST

Time: 1 hr
M.M: 20

1. If $\angle A B C=142^{\circ}$, find reflex $\angle A B C$.
2. Two angles form a linear pair. If one of the angle is acute, what is the type of other angle.
3. Find x in the given figure.

4. If the difference between two supplementary angles is 40° then find the angles.(2)
5. 1 and m are the intersecting lines in the given figure. Find x, y and z.

6. Complementary angles are in ratio $5: 4$ then find the angles.
7. If $l \| m$ then find the angles $\angle 1$ and $\angle 2$.

8. If $A B \| C D$, find the value of x, y and z.

IX - Mathematics

82

Chapter-7
 TRIANGLES

MIND MAP

Key points

Congruence in different shapes

- Two figures having the same shape and size are called congruent figures.
- Two plane figures are congruent, if each one when superimposed on the other, covers the other exactly.
- Two line segments are congruent, if they have equal lengths.
- Two angles of equal measures are congruent.
- Two circles of the same radii are congruent.
- Two squares of the same sides are congruent.
- Two rectangles are congruent, if they have the same length and breadth.

Congruency Criteria:

- If two triangles $A B C$ and $D E F$ are congruent under the correspondence $A \leftrightarrow$ $D, B \leftrightarrow E$ and $C \leftrightarrow F$, then symbolically, it is expressed as $\triangle A B C \cong \triangle D E F$.
- There are four congruent criteria for triangles:
(a) Side-Angle-Side (SAS) congruence rule: Two triangles are congruent, if two sides and included angle of one triangle are respectively equal to two sides and the included angle of the other triangle.
(b) Angle-Side-Angle (ASA) congruence rule: Two triangles are congruent, if two angles and the included side of one triangle are respectively equal to the two angles and the included side of the other triangle.
(c) Side-Side-Side (SSS) congruence rule: Two triangles are congruent, if three sides of one triangle are respectively equal to three sides of the other triangle.
(d) Right angle-Hypotenuse-Side (RHS) congruence rule: Two right triangles are congruent, if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of other triangle.

Very Short Answer Question (1 Mark)

1. Which of the following is not a criterion for congruency of triangles?
(a) SSS
(b) RHS
(c) AAA
(d) SAS
2. If $\boldsymbol{A B} \cong \boldsymbol{C D}$ then
(a) $A B<C D$
(b) $A B+C D=0$
(c) $A B=C D$
(d) $A B>C D$
3. If $\triangle A B C \cong \triangle D E F$ then
(a) $A C=D E$
(b) $B C=D F$
(c) $F E=C B$
(d) $A B=D F$
4. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(a) an equilateral triangle
(b) an isosceles triangles
(c) an obtuse triangle
(d) a right triangle
5. If $A B=Q R, B C=P R$ and $C A=P Q$, then
(a) $\triangle A B C \cong \triangle P Q R$
(b) $\triangle C B A \cong \triangle P R Q$
(c) $\triangle B A C \cong \triangle R P Q$
(d) $\triangle P Q R \cong \triangle \mathrm{BCA}$
6. Two figures are congruent if they have the \qquad shape and same \qquad .
7. Two circles are congruent if they have \qquad radii.
8. Two equilateral triangles are congruent, if they have \qquad sides.
9. Two square are congruent if they have \qquad sides.
10. If $\triangle P Q R \cong \triangle L M N$ then $N L$ \qquad
11. In $\triangle A B C, A B=A C$ and $\angle B=40^{\circ}$, then find $\angle \mathrm{C}$.
12. Write correct symbolic form of congruency if $A B=Q R, B C=P R$ and $C A=P Q$.
13. In the given figure, $A C$ is bisector of $\angle B A D$. $A B=3 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$, then find $A D$.

14. Find the diameter of circle O_{2}, if circle $O_{2} \cong$ Circle O_{1} and radius of circle O_{1} is 6 cm
15. Write the congruence criteria for triangles $\triangle A B C$ and $\triangle Q P R$ where $A B=Q P$, $\angle B=\angle P$ and $B C=P R$.
16. For right angled triangle $\triangle A B C, A B=B C$, find $\angle A$.
17. Write the congruence criteria for the following triangles.

18. Name the side equal to side $N L$ if $\triangle P Q R \cong \triangle L M N$.
19. Line segment $M N=4 \mathrm{~cm}$ and $T P=4.2 \mathrm{~cm}$. Are they congruent?
20. What does it mean if two triangles are congruent by SSS criterion?
21. In $\triangle P Q R, \angle R=\angle P, Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$. Find $P Q$.
22. In the given figure if $a=b=c$, then name the angle congruent to $\angle A O C$.

23. What does ' R ' stands for in RHS congruence?
24. In $\triangle B C D$ and $\triangle W X Y, B D=W X$ and $\angle B=\angle X$. What should be the third possibility to satisfy ASA congruency criterion?
25. If $\triangle A B C \cong \triangle M N O$ then $\angle A B C=$?

Short Answer type-I questions (2 marks)

26. If $\triangle A B P \cong \triangle K S T$ then
(a) $\angle P=$ \qquad (b) $K T=$ \qquad
27. In the following figure, which of the two triangles are congruent? Name them in symbolic form.

28. Explain why $A A A$ is not a criteria for congruency of two triangles.
29. In the given, if $A B=C D, A D=B C$ then prove that $\triangle A D C \cong \triangle C B A$

IX - Mathematics
86
30. If $\triangle A B C$ is an isosceles triangle such that $A B=A C$, then prove that altitude $A D$ from A on $B C$ bisects it.
31. Which criteria of congruence of triangles is satisfied in the given figure.

32. In a $\triangle P Q R, \angle P=110^{\circ}, P Q=P R$. Find $\angle Q$ and $\angle R$.
33. In the given figure $A B=A C$ and $\angle A C D=125^{\circ}$. Find $\angle A$

34. In the given figure, $A C$ bisects $\angle A$ and $\angle C$. If $A D=5 \mathrm{~cm}$ find $A B$.

35. The vertex angle of an isosceles triangle is 80°. Find out the measure of base angles.

Short Answer type-II Questions (3 Marks)

36. $A B C$ is a triangle and D is the mid-point of $B C$. The perpendicular from D to $A B$ and $A C$ are equal. Prove that triangle is isosceles.
37. Prove that angles opposite to equal sides of an isosceles triangles are equal.
38. In the given figure, If $A D=B D=C D$, find $\angle B A C$

39. In the given figure, if $A B=B C$ and $\angle A=\angle C$ then find the value of x.

40. In the given figure $\angle A B C=\angle B A C, D$ and E are points on $B C$ and $A C$ respectively such that $D B=A E$. If $A D$ and $B E$ intersect at O then prove that $O A=O B$.

41. In the given figure, if $A B=A C, \angle B A D=\angle C A E$ then prove that $\triangle A D E$ is an isosceles triangle.

IX - Mathematics
42. In $\triangle D E F, D M$ is the angle bisector of $\angle E D F$ that intersects $E F$ at M. If $D M=M F$, and $\angle E=2 \angle F$ then prove that $\angle E D F=72^{\circ}$
43. Prove that the angles of an equilateral triangle are 60° each.

Long Answer Questions (5 Marks)

44. The altitudes $A F, B D$ and $C E$ of $\triangle A B C$ are equal. Prove that $\triangle A B C$ is an equilateral triangle.
45. Two sides $A B, B C$ and median $A M$ of one $\triangle A B C$ are respectively equal to sides $P Q, Q R$ and median $P N$ of $\triangle P Q R$. Show that.
(i) $\triangle A B M \cong \triangle P Q N$
(ii) $\triangle A B C \cong \triangle P Q R$
46. In the given figure, $P Q R$ is a triangle in which altitudes $Q S$ and $R T$ to sides $P R$ and $P Q$ are equal. Show that.
(i) $\triangle P Q S \cong \triangle P R T$
(ii) $P Q R$ is an isosceles triangle

47. In the given figure, $A B=A D, \angle 1=\angle 2$ and $\angle 3=\angle 4$. Prove that $A P=A Q$.

48. Vandana wishes to literate the poor children of the nearby slum area. She makes flash cards for them as shown in the given figure.

(i)

(ii)

(iii)
(a) Which two flash cards are congruent.
(b) Which criteria of congruency is satisfied here?
(c) Write the third side of both the triangles using $C P C T$.
49. In the given figure $A B=C D, C E=B F$ and $\angle A C E=\angle D B F$. Prove that
(i) $\triangle A C E \cong \triangle D B F$
(ii) $A E=D F$

50. Show that the triangles $\triangle A B C$ and $\triangle D E F$ in the given figure are congruent. Hence find the value of x.

Chapter-7

TRIANGLES

Answers

1. (c) AAA
2. (c) $A B=C D$
3. (c) $F E=C B$
4. (d) a right triangle
5. (b) $\triangle C B A \cong \triangle P R Q$
6. same, size
7. equal
8. equal
9. equal
10. $N L=R P$
11. 40°
12. $\triangle A B C \cong \triangle Q R P$
13. $A D=3 \mathrm{~cm}$
14. 12 cm
15. SAS
16. $\angle A=45^{\circ}$
17. ASA
18. $N L=R P$
19. No
20. It means all three sides of one triangle are equal to three sides of other triangle.
21. $P Q=4 \mathrm{~cm}$
22. $\angle B O D$
23. Right angle
24. $\angle D=\angle W$
25. Sides of squares must be equal
26. (a) $\angle T$
(b) $A P$
27. $\triangle P B D \cong \triangle P C T$ or any correct form
28. Becuase many triangles are possible with given three angles.
29. In $\triangle A D C$ and $\triangle C B A$
$A B=C D$ (given)
$A D=B C$ (given)
$A C=A C$ (common)
$\therefore \triangle A D C \cong \triangle C B A$ (by SSS congruence rule)
30. In $\triangle A B D$ and $\angle A C D$
$A B=A C$ (given)
$A D=A D$ (common)
$\angle A D B=\angle A D C$ (each 90°)
$\therefore \triangle A B D \cong \triangle A C D$ (By RHS congruence rule)
$\Rightarrow B D=C D$ (by CPCT)
31. SAS
32. $\angle Q=\angle R=35^{\circ}$
33. $\angle A=70^{\circ}$
34. $A B=5 \mathrm{~cm}$
35. $50^{\circ}, 50^{\circ}$
36. In $\triangle B D E$ and $\triangle C D F$

$$
\begin{aligned}
& B D=C D \text { (given) } \\
& D E=D F \text { (given) } \\
& \angle 1=\angle 2\left(\text { (each } 90^{\circ}\right)
\end{aligned}
$$

By RHS congruence rule

$$
\begin{aligned}
& \Delta B D E \cong \triangle C D F \\
\Rightarrow & \angle B=\angle C(\text { By } C P C T) \\
\Rightarrow & A B=A C(\therefore \text { sides opposite to equal angles are equal })
\end{aligned}
$$

37. Constructions: $A D \perp B C$

In $\triangle A D B$ and $\triangle A D C$

$$
\begin{array}{rlr}
& A B=A C & \text { (given) } \\
& A D=A D & (\text { common }) \\
& \angle A D B=\angle A D C \quad\left(\text { each } 90^{\circ}\right) \\
\therefore & \triangle A D B \cong \triangle A D C & (\text { By RHS congruence rule }) \\
\Rightarrow & \angle B=\angle C(\text { By } C P C T)
\end{array}
$$

38.

Angles opposite to equal sides are equal

$$
\begin{align*}
& \text { In } \triangle A C D \quad \angle 1=\angle 2 \\
& \text { and In } \triangle A B D=\angle 3 \tag{1}\\
& \angle A+\angle B+\angle C=180^{\circ} \quad \tag{2}\\
& \angle 2+\angle 4+\angle 3+\angle 1=180^{\circ} \quad(\text { angles sum property) } \\
&\left.\angle 2+\angle 4 \text { using }^{\mathrm{n}} 1, \text { eq }^{\mathrm{n}} 2\right) \\
& \angle 2+\angle 4+\angle 4+\angle 2=180^{\circ} \\
& 2(\angle 2+\angle 4)=180^{\circ} \\
& \angle 2+\angle 4=\frac{180^{\circ}}{2}=90^{\circ} \\
& \angle B A C=90^{\circ}
\end{align*}
$$

39. In $\triangle B A D$ and In $\triangle B C E$

$$
\begin{array}{ll}
A B=B C & \text { (given) } \\
\angle A=\angle C & \text { (given) } \\
\angle B=\angle B & \text { (common) } \\
\triangle B A D \cong \triangle B C E & \text { (ASA) } \\
\angle x=75^{\circ} & \text { (by CPCT) }
\end{array}
$$

40. In $\triangle A B E$ and $\triangle A B D$

$$
\begin{aligned}
& A B=A B, A E=B D \\
& \angle E A B= \angle D B A \\
& \therefore \quad \triangle A B E \cong \cong A B D(\mathrm{By} S A S) \\
& \Rightarrow \angle A B E= \angle B A D(\mathrm{By} C P C T) \\
& \text { In } \angle O A B \\
& \angle 1=
\end{aligned}
$$

41. $A B=A C \Rightarrow \angle B=\angle C$

In $\triangle A B D$ and $\triangle A C E$
$\angle B A D=\angle C A E, A B=A C, \angle B=\angle \mathrm{C}$
$\therefore \triangle A B D \cong \triangle A C E(\mathrm{By} A S A)$
$\Rightarrow \quad A D=A E(\mathrm{By} C P C T)$
$\therefore \quad A D E$ is an isosceles triangle.
42. $\angle E D M=\angle F D M, \angle F D M=\angle D F M$.

Using angle sum property in $\triangle D E F$, find $\angle E D F$.
43. All sides of an equilateral triangle are equal,
\therefore all angles will be equal (angles opposite to equal sides are equal)
44. In $\triangle B D C$ and $\triangle B E C$

$$
\begin{aligned}
& B D=E C, B C=B C, \angle B E C=\angle B D C\left(90^{\circ}\right) \\
\therefore & \Delta B D C \cong \triangle B E C \text { (By RHS }) \\
\therefore & \angle B=\angle C \text { similarly } \angle A=\angle B \& \angle A=\angle C \\
\Rightarrow & \angle A=\angle B=\angle C \\
\Rightarrow & A B=B C=A C
\end{aligned}
$$

Hence $\triangle A B C$ is an equilateral triangle.
45. $\triangle A B M \cong \triangle P Q N(\mathrm{By} S S S)$
$\Rightarrow \quad \angle B=\angle Q(\mathrm{By} C P C T)$
$\therefore \triangle A B C \cong \triangle P Q R(\mathrm{By} S A S)$
46. In $\triangle Q T R$ and $\triangle R S Q$,

$$
Q R=Q R, \angle Q T R=\angle R S Q, R T=S Q
$$

$\therefore \quad \triangle Q T R \cong \triangle R S Q$ (By RHS)
$\therefore \angle Q=\angle R(\mathrm{By} C P C T) \Rightarrow P Q=P R \quad$ \{It is an isosceles triangle $\}$
In $\triangle P S Q$ and $\triangle P T R$

$$
R T=S Q, \angle P T R=\angle P S Q, P R=P Q
$$

$\therefore \triangle P S Q \cong \triangle P T R($ By RHS $)$
47. $\angle 1=\angle 2 \quad \mathrm{eq}^{\mathrm{n}} \ldots$ (1)
$\angle 3=\angle 4 \quad$ eq $^{\mathrm{n}} \ldots$ (2)
$\mathrm{eq}^{\mathrm{n}}(1)+\mathrm{eq}^{\mathrm{n}}(2)$
$\Rightarrow \angle 1+\angle 3=\angle 2+\angle 4$
$\angle C A B=\angle C A D \quad---(3)$
$A C=A C \quad---(4)$
$A B=A D$
using (3), (4), (5)
$\triangle A D C \cong \triangle A B C \Rightarrow \angle A D C=\angle A B C$
In $\triangle A D Q \& \triangle A B P$

$$
\begin{aligned}
& \angle 1=\angle 2, A B=A D, \angle A B P=\angle A D Q \\
\Rightarrow & \triangle A D Q \cong \triangle A B P(\text { By } A S A) \\
\therefore \quad & A P=A Q(\text { By } C P C T)
\end{aligned}
$$

48. (a) $\triangle A B C \cong \triangle Q R P$
(b) $S A S$
(c) $B C=R P$
49. $A B=C D$

Adding $B C$ on both side then $\triangle A C E \cong \triangle D B F$ (By $S A S$)
50. $3 x=2 x+20$
$3 x-2 x=x=20$

Chapter-7 Triangles

Practice Test

Time: 1 hr .

M.M. 20

1. Find the measures of each exterior angle of an equilateral triangle.
2. The \qquad of an isosceles triangle divides it into two congruent triangles.
3. The vertical angles of an isosceles triangle is thrice the one of its base angle. Find the base angle.
4. Find if $\triangle A B C$ is possible with $A B=4.5 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $A C=9.5 \mathrm{~cm}$. (2)
5. In the given figure, $A B=A C$ and side $B A$ is produced to D such that $A B=A D$. Prove that $\angle B C D=90^{\circ}$

6. Prove that medians of an equilateral triangle are equal.
7. In the given figure C is the midpoint of $A B, \angle D C A=\angle E C B$ and $\angle D B C=\angle E A C$. Prove that $D C=E C$ and $B D=A E$.

8. In the given figure $A B C$ is a right angled triangle, right angle at $C . M$ is the mid-point of hypotenuse AB . C is joined to M and produced to a point D such that

Key points

1. Quadrilateral: It is a closed figure bounded by four line segments. In a quadrilateral there are.

(i) Two pairs of opposite sides (no common point). e.g., $A B \& C D, B C \& A D$
(ii) Two pairs of opposite angles $\angle A \& \angle C$ and $\angle B \& \angle D$.
(iii) Four pairs of adjacent sides $A B \& B C, B C \& C D, C D \& A D$ and $A D \& A B$ (one common Point)
(iv) Four pairs of adjacent angles (one common side) $\angle A \& \angle B, \angle B \& \angle C$, $\angle C \& \angle D, \angle D \& \angle A$.
(v) Line segment joining opposite vertices is called diagonal of quadrilateral e.g., $A C \& B D$.
(vi) Sum of the angles of a quadrilateral is $360^{\circ}, \angle A+\angle B+\angle C+\angle D=360^{\circ}$.
2. Parallelogram: A quadrilateral is a parallelogram if.

- Both the pairs of opposite sides are equal/parallel or
- Both the pairs of opposite angles are equal or
- Diagonals bisects each other or
- One pair of opposite side is equal and parallel

3. A diagonal of a parallelogram divides it into two congruent triangles. Other examples other example of parallelogram.

4. Theorem: A line segment joining the mid point of two sides of a triangles is parallel to the third side and is half of it. If $D \& E$ are mid points then $D E \| B C$ and $D E=\frac{1}{2} B C$.

5. Converse of mid point theorem.

The line drawn through the mid point of one side of a triangle, parallel to another side bisects the third side. So, if D is mid point of $A B$ and $D E \| B C$ then E will be mid point of $A C$.

Very Short Answer type Questions (1 Marks)

1. Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}, 75^{\circ}$ the fourth angle is
(a) 90°
(b) 95°
(c) 105°
(d) 120°
2. $A B C D$ is a rhombus such that $\angle A C B=40^{\circ}$ then $\angle A B D$ is
(a) 40°
(b) 45°
(c) 50°
(d) 60°
3. The bisectors of the angles of a parallelogram enclose a
(a) Parallelogram
(b) Square
(c) Rhombus
(d) Rectangle
4. The figure obtained by joining the midpoint of the sides of a quadrilateral taken in order is a
(a) Square
(b) Parallelogram
(c) Rectangle
(d) Rhombus
5. The diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at point " O " If $\angle D A C=32^{\circ}$ and $\angle A O B=70^{\circ}$ then $\angle D B C$ is equal to
(a) 24°
(b) 86°
(c) 38°
(d) 32°
6. The angles of quadrilateral are in the ratio $3: 4: 5: 6$ The respective angles of the quadrilateral are
(a) $60^{\circ}, 80^{\circ}, 100^{\circ}, 120^{\circ}$
(b) $120^{\circ}, 100^{\circ}, 80^{\circ}, 60^{\circ}$
(c) $120^{\circ}, 60^{\circ}, 80^{\circ}, 100^{\circ}$
(d) $80^{\circ}, 120^{\circ}, 100^{\circ}, 60^{\circ}$
7. Line segment joining the mid points of two sides of a triangles is parallel to the third side and is \qquad of it.
(a) Trisect
(b) Bisect
(c) Half
(d) One Fourth
8. The diagonals of a rhombus are 12 cm and 16 cm . The length of that side of rhombus is :-
(a) 12 cm
(b) 16 cm
(c) 8 cm
(d) 10 cm
9. Points A, B, C and D are midpoints of the sides of square $P Q R S$. If the area of $P Q R S$ is $36 \mathrm{Sq} . \mathrm{cm}$, the area of $A B C D$ is \qquad Sq. cm.
(a) $9 \sqrt{ } 2$
(b) $18 \sqrt{ } 2$
(c) 9
(d) 18

10. The perimeter of a rhombus is 60 cm . If the length of its longer diagonal measures 24 cm , the length of the shorter diagonal is \qquad cm .
(a) 20
(b) 18
(c) 15
(d) 9
11. Which statements is true about all parallelogram
(a) The diagonals are congruent.
(b) The area is the product of two adjacent sides
(c) the opposite angles are congruent
(d) The diagonals are perpendicular to each other.
12. In the given figure $A B C D$ is a rectangle. If $m \angle A D E=30^{\circ}$ and m $\angle C F E=150^{\circ}$. What will be the $\mathrm{m} \angle D E F$?

13. Given four points A, B, C, D such that three points A, B and C are collinear. Name the closed figure obtained by joining these point in order.
14. What is the sum of consecutive angles of parallelogram?
15. In parallelogram $A B C D$, bisectors of angles A and B intersect each other at " O ". Find the value of angles $A O B$.

16. If an angle of a parallelogram is two-third of its adjacent angle then find the smallest angle of the parallelogram.
17. In the given figures $P Q R S$ is a rhombus. Find the value of x.

101
18. Two adjacent angles in a parallelogram are in the ratio $2: 4$. Find the values of these two angles.
19. In a rhombus $A B C D$, if $\angle A=60^{\circ}$ find $\angle B, \angle C \& \angle D$.
20. The angles of a quadrilateral are in the ratio $1: 2: 4: 5$. Find the measure of each angle.
21. If in parallelogram $A B C D, \angle A=(2 x+15)^{\circ}, \angle B=(3 x-5)^{\circ}$ then find the value of x ?
22. In a parallelogram if all the four angles are in the ratio $1: 1: 1: 1$ then, what type of parallelogram is this?
23. In the figure, $A B \| C D$, what will be the measure of $\angle A D C$?

24. In the figure, if $D \& E$ are respectively the mid point of $A B \& A C$, what will be the length of $E D$?

25. $A B C D$ is a rhombus in which $\angle A B C=40^{\circ}$, then what will be value of $\angle A D B$?

26. In the figure, $A B C D$ is a parallelogram find value of $(x+y)$.
27. In the figure line $l \| m$ and $p \| q, \angle B C D=108^{\circ}$ find all four angles of quadrilateral $A B C D$.

28. Which of the following statements are true (t) and which are false (f)?
(a) In a parallelogram, the diagonals are equal ()
(b) If all the angles of a quadrilateral are equal it is a parallelogram
(c) The diagonals of parallelogram bisect each other ()
(d) The diagonals of rhombus are equal ()
(e) All the angles of parallelogram are acute angles ()
(f) In a trapezium both pairs of opposite sides are parallel. ()
29. Opposite angles of a parallelogram are \qquad -
30. Diagonals of a rectangle \qquad each other and are \qquad .
31. If in a rectangle $A B C D$, diagonal $A C$ bisects $\angle A$ as well as $\angle C$ then $A B C D$ is a \qquad .
32. A quadrilateral is a parallelogram if its both the pairs of opposite sides are
\qquad _.
33. Diagonals of a rhombus \qquad each other and are \qquad .
34. Diagonals of a square are \qquad , \qquad and \qquad .

Short Answer type-I Question (2 Marks)

35. Prove that the sum of all the four angles of a quadrilateral is 360 .
36. Show that opposite angles of a parallelogram are equal.
37. In a parallelogram $A B C D \angle B=110^{\circ}$ determine the measure of $\angle A$ and $\angle D$.
38. In the figure if $P Q R S$ is a parallelogram, then find the value of x and y.

39. The diagonals of a parallelogram $A B C D$ interest at O. A line through O intersects $A B$ at X and $D C$ at Y. Prove that $O X=O Y$.
40. In a parallelogram $A B C D$ diagonals $A C$ and $B D$ intersect at O and $A C=7.4 \mathrm{~cm}$ and $B D=6.2 \mathrm{~cm}$. Find the length of $A O$ and $B O$.
41. Two opposite angles of a parallelogram are $(5 x-3)$ and $(4 x+12)$. Find the measure of each angle of the parallelogram.
42. Diagonals of a quadrilateral $A B C D$ bisect each other if $\angle A=35^{\circ}$ determine $\angle B$.
43. The perimeter of a parallelogram is 30 cm . If longer side is 9.5 cm then find the length of shorter side.
44. In a parallelogram $A B C D$ diagonals $A C$ and $B D$ intersects at O and $A C=12.6$ cm and $B D=9.4 \mathrm{~cm}$. Find the measures of $O C$ and $O D$.
45. $A B C D$ is a rhombus in which $D O=3 x$ and $A O=4 x$, find perimeter of quadrilateral $A B C D$.

46. The angles of a quadrilateral are $(x+20)^{\circ},(x-20)^{\circ} \cdot(2 x+5)^{\circ},(2 x-5)^{\circ}$. Find the value of x.

Short Answer type-II Questions (3 Marks)

47. If $A B C D$ in a rhombus with $\angle \mathrm{A} B C=50^{\circ}$ then find $\angle A C D$.
48. In the adjoining figure if $P Q R S$ is a parallelogram where $\angle P Q R=100^{\circ}$ and $\angle S P R=40$. Find $\angle P R Q$ and $\angle S R Q$.

49. Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side.
50. In the given figure L, M and N are mid point of the sides $P Q, P R$ and $Q R$ respectively of $\triangle P Q R$. If $P Q=4.4 \mathrm{~cm}, Q R=5.6 \mathrm{~cm}$ and $P R=4.8 \mathrm{~cm}$ then find the perimeter of $\triangle L M N$.

51. A quadrilateral is a parallelogram if one pair of opposite sides are equal and parallel. Prove it.
52. If the diagonals of a quadrilateral bisect each other then quadrilateral is a parallelograms. Prove it.
53. In a parallelograms $P Q R S, M$ and N are points on $P Q$ and $R S$ such that $P M=R N$. Prove that $M S \| N Q$.
54. In a parallelogram $A B C D, A P$ and $C Q$ are drawn perpendiculars from vertices A and C on diagonal $B D$. Prove that $\triangle A P B \cong \triangle C Q D$.
55. The diagonals of a rectangle $A B C D$ meet at O. If $\angle B O C=50^{\circ}$ then find $\angle O D A$

105
56. In the given figure $A D$ and $B E$ are the medians of $\triangle A B C$ and $B E \| D F$ prove that $C F=1 / 4 A C$.

Long Answer type Questions (5 Marks)

57. In the figure $L M N O$, is a trapezium in which $L M$ is parallel to side $O N$ and P is the mid point of side $L O$. If Q is a point on the side $M N$ such that segment $P Q$ is parallel to side $O N$ Prove that Q is the mid point of $M N$ and $P Q=\frac{1}{2}$ $(L M+O N)$.

58. In the figure, $\triangle A B C$ is right angles at B. If $A B=9 \mathrm{~cm}, A C=15 \mathrm{~cm}$. and D and E are the mid points of $A B$ and $A C$ respectively calculate

(i) The length of $B C$
(ii) The area of trapezium $B C E D$
59. A farmer has divided his field into three parts as in the figure. First part is used to take care of his cattle. While II and III are used to grow two different crops.

Answer the following:

(i) How much area has been used to take care for cattles?
(ii) Are the two areas part II and part III equal? Justify.
(iii) What is the total area of the field?
60. $A B C D$ is a parallelogram. Side $A B$ is produced on both sides to $E \& F$ as in figure such that $B E=B C \& A F=A D$. Show that $E C \& F D$ when produced meets at right angle.

61. P is mid point of side $C D$ of a parallelogram $A B C D$. A line through C parallel to $P A$ intersects $A B$ at $\mathrm{Q} \& \mathrm{DA}$ produced at R. Prove that $D A=A R \& C Q=$ $Q R$.

Chapter-8
 QUADRILATERAL

Answers

1. (d) 120°
2. (c) 50°
3. (d) Rectangle
4. (b) Parallelogram
5. (c) 38°
6. (a) $60^{\circ}, 80^{\circ}, 100^{\circ}, 120^{\circ}$
7. (c) Half
8. (d) 10 cm
9. (d) 18
10. (b) 18
11. The opposite angles are congruent
12. 90°
13. A triangle
14. 180°
15. 90°
16. 72°
17. 40°
18. $60^{\circ}, 120^{\circ}$
19. $120^{\circ}, 60^{\circ}, 120^{\circ}$
20. $30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$
21. 38°
22. Rectangle
23. 115°
24. 5 cm
25. 50°
26. 200°
IX - Mathematics 108
27. $108^{\circ}, 72^{\circ}, 108^{\circ}, 72^{\circ}$
28. (a) F
(b) F
(c) T
(d) F
(e) F
(f) F
29. Equal
30. Bisect, equal
31. rhombus
32. parallel or equal
33. Bisect, Perpendicular to each other
34. Equal, bisect each other, perpendicular to each other.
35. $70^{\circ}, 110^{\circ}$
36. $x=y=4$
37.

In $\triangle A O X \& \triangle C O Y$

$$
\begin{array}{rlrl}
O A & =O C & & \\
\angle A O X & =\angle C O Y & & \text { (vertically opposite) } \\
\angle O A X & =\angle O C Y & & \text { (Aleternate interior angles) } \\
\triangle A O X & \cong \triangle C O Y(A S A) & & \\
O X & =O Y(C P C T) &
\end{array}
$$

40. $O A=\frac{1}{2} A C$ (Diagonals of a parallelogram bisect each other)

$$
=\frac{1}{2} \times 7.4=3.7 \mathrm{~cm}
$$

Similarly $O B=\frac{1}{2} B D=3.1 \mathrm{~cm}$.
41. $5 x-3=4 x+12$
$x=15^{\circ}$
So angles are $5 x-3=4 \times 15-3=72^{\circ}$
Other angles will be $108^{\circ}, 72^{\circ}, 108^{\circ}$
42. 145°
43. Let longer side be $a=9.5 \mathrm{~cm}$ and shorter side be ' b '

$$
\begin{aligned}
& \text { Perimeter }=2 a+2 b=30 \\
& \qquad \begin{aligned}
2 \times 9.5+2 b & =30 \\
2 b & =11 \\
b & =5.5 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

44. $O C=\frac{1}{2} A C=6.3 \mathrm{~cm}$

$$
O D=\frac{1}{2} B D=4.7 \mathrm{~cm}
$$

45. In rt $\triangle O A D$

$$
\begin{aligned}
A D^{2} & =(3 x)^{2}+(4)^{2} \\
A D^{2} & =9 x^{2}+16 x^{2} \\
A D & =5 x
\end{aligned}
$$

Perimeter $=20 x$ units
46. Sum of all the angles of a quadrilateral is 360°

$$
x=60
$$

47. $A B C D$ is a rhombus.
$\Rightarrow A B C D$ is a parallelogram

$$
\begin{aligned}
& \angle A B C=\angle A D C \\
& \angle O D C=280^{\circ}
\end{aligned}
$$

in $\triangle O C D$

$$
\angle O C D+\angle O D C+\angle C O D=180^{\circ}
$$

$\Rightarrow \angle A C D=62^{\circ}$
48. Consider $P S \| R Q$ and $P R$ as transversal then consider $P Q \| R S$ and $P R$ as transversal

$$
\angle P R Q=40^{\circ}, \angle S R Q=80^{\circ}
$$

50. $M N=\frac{1}{2} P Q=2.2 \mathrm{~cm}$

Similarly $L M=2.8 \mathrm{~cm} . L N=2.4 \mathrm{~cm}$
Perimeter $=7.4 \mathrm{~cm}$

IX - Mathematics
52.

Proof:

$$
O A=O C
$$

(given)
$O B=O D$
$\angle 1=\angle 2$ (V.O.A)
$\Rightarrow \quad \triangle A O B \cong \triangle C O D$ (why?)
$\Rightarrow \quad A B=C D$
\&
$\angle 3=\angle 4$
$A B \| C D$
--- (1) (CPCD)
(CPCD)
--- (2) (Why ?)
53.

Proof: In $\triangle P M S$ \& $\triangle R N Q$

$P S$	$=Q R$	(opp. sides of a $\\|$ gm)
$P M$	$=R N$	$($ given $)$
$\angle 1$	$=\angle 2$	(opp angles of a $\\|$ gm)
$\triangle P M S$	$\cong \Delta R N Q$	

54.

In $\triangle A P C$ \& $\triangle C Q D$

$$
\angle 1=\angle 2 \text { and } \angle 3=\angle 4
$$

$$
\begin{aligned}
A B & =C D \\
\Rightarrow \quad \triangle A P B & =\Delta C Q D[\mathrm{By} A A S]
\end{aligned}
$$

55.

$$
\angle B O C=\angle A O D=50^{\circ}
$$

In $\triangle A O D$

$$
\begin{aligned}
x+x+50 & =180^{\circ} \quad[\text { why }] \\
2 x & =180-50 \\
x & =65^{\circ}=\angle O D A
\end{aligned}
$$

56. Hint- In $\triangle A B C$

$$
E C=\frac{1}{2} A C[\mathrm{BE} \text { is median }]
$$

In $\triangle B E C$

$$
C R=\frac{1}{2} E C
$$

58. $12 \mathrm{~cm}, 40.5 \mathrm{~cm}^{2}$
59. Hint:
(iii) Area of Trapezium $A B C E=\frac{1}{2}(130+120) \times 60$

Ans. (i) $300 \mathrm{~m}^{2}$
(ii) Yes
(iii) $7500 \mathrm{~m}^{2}$
60. In parallelogram $A B C D$

IX - Mathematics

$$
\begin{align*}
x+x+\angle 1 & =180^{\circ} \\
x & =90-\frac{1}{2}(\angle 1) \tag{2}
\end{align*}
$$

similarly

$$
\begin{equation*}
y=90^{\circ}-\frac{1}{2}(\angle 2) \tag{3}
\end{equation*}
$$

In $\triangle D G C, \angle D G C+x+y=180^{\circ}$
61. $A P C Q$ is a parallelogram
Q is mid point of $A B$
in $\triangle A Q R \& \triangle B Q C$

$$
\begin{aligned}
\angle A Q R & =\angle B Q C \\
\angle Q A R & =\angle Q B C \\
A Q & =B Q \\
\triangle A Q R & \cong \triangle B Q C
\end{aligned}
$$

Practice Test
 QUADRILATERALS

Time: 1 Hr.

M.M. 20

1. The angles of quadrilateral $A B C D$ are in the ratio $2: 3: 5: 8$. Find the measure of smallest angle.
2. Two opposite angles of a Parallelogram are $(5 x-3)^{\circ}$ and $(4 x+12)^{\circ}$. Find the measure of each angle of the parallelogram.
3. In a $\triangle P Q R$, median $P S$ is produced to a point T such that $P S=S T$. Prove that $P Q T R$ is a parallelogram.
4. In the fig. $P Q R S$ is a rhombus in which the diagonal $P R$ is produced to T. If $\angle S R T=152^{\circ}$, find x and y.

5. $A B C D$ is a square. A line $B M$ intersects $C D$ at M and the diagonal $A C$ at O such that $\angle A O B=70^{\circ}$, find a

6. $A D$ is median of $\triangle A B C \& E$ is the mid point of $A D . B E$ is produced to meet $A C$ in F. Prove that $A F=1 / 3 A C$.
7. Show that the bisectors of angles of a parallelogram form a rectangle.
8. Show that the quadrilateral formed by joining the mid point of the sides of a square is also a square.

CHAPTER-9

CIRCLES

MIND-MAP

Equal chords of a circle subtends equal angles at the centre of a circle.

The angle subtended by an arc at the centre is double the angle subtended by it on the remaining part of the circle.

Key points

The collection of those points in a plane which are at a fixed distance from a given fixed point is called a circle. The fixed point is called centre of the circle and the fixed distance is called radius.

Theorem : Equal chords of a circle subtends equal angles at centre.
If $A B=C D$ then
$\angle A O B=\angle C O D$
Converse : If angles subtended by chord at centre are equal, then chords are equal.

Theorem : The perpendicular from centre to a chord of a circle, bisects the chord.

If $O M \perp A B$ then
$A B=B M$
Converse : The line joining the mid-point of the chord to the centre of a circle is pendicular to the chord.

Property : If two chords of a circle are equal then corresponding arcs are equal.

Converse : If arcs of a circle are equal then corresponding chords are also equal.

Theorem : Equal chords of a circle are equidistant from centre. If $\mathrm{PQ}=\mathrm{RS}$
then $\mathrm{OM}=\mathrm{ON}$

Converse : Chords equidistant from centre are equal in length.

Property: Congruent arcs or equal arcs of a circle subtend equal angle at the centre.
$\Rightarrow \angle A O B=\angle C O D$

Theorem : The angle subtended by an arc at the centre of circle is twice the angle which is subtended at remaining part of the circle.
$\Rightarrow \angle A O B=2 \angle A P B$

- Any two angles in the same segment of the circle are equal.
$\angle A P B=\angle A Q B$

- Angle in a semicircle is a right angle.
$\Rightarrow \angle A P B=90^{\circ}$

Theorem : In a cyclic quadrilateral, the sum of opposite angles is 180°.
$\angle A+\angle C=180^{\circ}$
$\angle B+\angle D=180^{\circ}$

Converse : If sum of the opposite angles of a quadrilateral is
 180° then the quadrilateral is cyclic.

Very Short Answer Questions (1 Mark)

1. The angles in the same segment of a circle are:
(a) Equal
(b) Complementary
(c) Supplementary
(d) Vertically Opposite Angles
2. In fig, $O A=5 \mathrm{~cm}, A B=8 \mathrm{~cm}$ and $O D$ is perpendicular to $A B . C D$ is equal to:
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm
3. The radius of a circle is 13 cm and the length of one of
 its chords is 10 cm . The distance of the chord from the centre is:
(a) 11.5 cm
(b) 12 cm
(c) $\sqrt{69} \mathrm{~cm}$
(d) 23 cm
4. In fig. if $\angle A B C=20^{\circ}$, then $\angle A O C$ is equal to:
(a) 20°
(b) 40°
(c) 60°
(d) 10°

5. $A B$ and $B C$ are chords of a circle such that $A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}$ and $A B$ is perpendicular to $B C$. The radius of the circle passing through the point A, B and C is:
(a) 6 cm
(b) 8 cm
(c) 10 cm
(d) 12 cm
6. In the given figure, $A B$ is chord of a circle with centre O and $A B$ is produced to C such that $B C=O B$. Also, $C O$ is joined and produced to meet the circle in D. If $\angle A C D=25^{\circ}$, then $\angle A O D=$?
(a) 50°
(b) 75°
(c) 90°
(d) 100°

IX - Mathematics
7. For the points A, B, C and D to be con-cyclic, $\angle B A D$ and $\angle B A C$ should be equal to:
(a) 180°
(b) 90°
(c) 45°
(d) 100°
8. $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$ the distance of $A B$ from the centre of the circle is:
(a) 17 cm
(b) 15 cm
(c) 4 cm
(d) 8 cm
9. In the given figure, $\angle D A B=60^{\circ}$ and $\angle A B D=50^{\circ}$ then $\angle A C B=$?
(a) 50°
(b) 60°
(c) 70°
(d) 80°

10. In figure $\angle A O B=90^{\circ}$ and $\angle C B A=30^{\circ}$, then $\angle C A O$ is equal to:
(a) 30°
(b) 45°
(c) 90°
(d) 60°

11. In the given figure O is the centre of a circle and $\angle B A C=40^{\circ}$, then $\angle O B C=$?
(a) 40°
(b) 50°
(c) 80°
(d) 20°

12. An equilateral triangle of side 9 cm is inscribed in a circle. The radius of the circle is:
(a) 3 cm
(b) $3 \sqrt{2} \mathrm{~cm}$
(c) $3 \sqrt{3} \mathrm{~cm}$
(d) 6 cm
13. In fig. $B C$ is a diameter of the circle and $\angle B A O=60^{\circ}$, then $\angle A D C$ is equal to:
(a) 30°
(b) 60°
(c) 120°
(d) 45°

14. In the given figure, the measure of $\angle B C D$ is :
(a) 80°
(b) 30°
(c) 70°
(d) 100°

15. In the given figure $A B C D$ and $A B E F$ are cyclic quadrilaterals. If $\angle B C D=110^{\circ}$ then $\angle B E F=$?
(a) 110°
(b) 55°
(c) 90°
(d) 70°

16. $A B C D$ is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and $\angle A D C=140^{\circ}$, then $\angle B A C$ is equal to:
(a) 80°
(b) 30°
(c) 50°
(d) 40°
17. The length of the chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm is:
(a) 5 cm
(b) 10 cm
(c) 12 cm
(d) 13 cm
18. In the given figures, $\angle E C B=40^{\circ}$ and $\angle C E B=105^{\circ}$, then $\angle E A D=$?
(a) 35°
(b) 20°
(c) 50°
(d) 40°

19. In the following figure, $B C=$ radius $O B$. Find the value of $\angle O C B$.
(a) 69°
(b) 46°
(c) 92°
(d) 23°

IX - Mathematics
20. In the given figure, $A O B$ is the diameter of the circle and $A C=B C$. Find $\angle C A B$.
(a) 60°
(b) 46°
(c) 45°
(d) 70°

21. A segment of a circle is the region between an arc and a \qquad of the circle.
22. An arc of a circle is called a \qquad if the ends of the arc lie on the ends of a diameter.
23. The degree measure of a semi circle is \qquad .
24. A circle divides the plane into \qquad parts.
25. The diameter is the \qquad chord of the circle.
26. Circles having the same centre and different radii are called \qquad circle.
27. Angle in a semicircle is a \qquad angle.
28. If two chords of a circle are equal then the corresponding arcs are \qquad .
29. If the sum of a pair of opposite angles of a quadrilateral is 180°, then quadrilateral is \qquad .
30. A round pizza is cut into 4 equal pieces. Each piece represent a \qquad .
31. Find y in given figure.

32. Find x in given figure.

33. $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$ then find $B D$.
34. Given two concentric circles with centre O. A line cut the circle at A, B, C and D respectively. If $A B=10 \mathrm{~cm}$, then find the length of $C D$.

Short Answer Type-I Questions (2 Marks)

35. Find x in given figure.

36. In given figure, $O C$ is perpendicular segment drawn from centre O on chord $A B$. If $O B=5 \mathrm{~cm}$ and $O C=3 \mathrm{~cm}$ then find length of $A B$.

37. In given figure, O is centre of circle. If $\angle A O C=130^{\circ}$ then find $\angle \mathrm{ABC}$.

38. In given figure, $A O B$ is diameter of circle $\& P$ is any point on the circle. Find $\angle A P B$.

IX - Mathematics
122
39. Prove that the cyclic parallelogram is a rectangle.
40. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
41. In the following figure, find the value of $\angle B C N$.

42. In the given figure, find the value of reflex angle $P O R$.

43. Find the value of x in figure if O is centre of circle and $\angle O A B=50^{\circ}$

44. In the given figure, O is centre of the circle with radius $5 \mathrm{~cm}, O P \perp C D$, $O Q \perp A B, A B \| C D, A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Determine $P Q$.

45. In the given figure, O is the centre of a circle and $\angle A O B=90^{\circ}, \angle B O C=120^{\circ}$. What is measure of $\angle A B C$?

46. In the given figure, $A B$ and $C D$ are parallel chords and length of arc $A C=14$ cm . What is length of $\operatorname{arc} B D$?

47. In given figure, $\angle P Q R=100^{\circ}$ where $P, Q \& R$ are points on the circle with centre O. Find $\angle O P R$.

48. In the given figure, O is centre of circle. If $\angle A B D=35^{\circ}$ and $\angle B A D=70^{\circ}$, find $\angle A C B$.

49. In fig. $O D$ is perpendicular to the chord $A B$ of a circle whose centre is O and $B C$ is a diameter. Show that $C A=2 O D$.

50. Two concentric circles with centre O where $A B$ is chord of outer circle which intersects the inner circle at C and D are shown in figure. If $A B=12 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$, find $A D$.

51. In figure, $A B=B C$ and O is the centre of the circle. Prove that $B O$ bisects $\angle A B C$.

52. In figures, $P Q R S$ is a cyclic quadrilateral. Find the value of x and y.

Short Answer type-II Questions (3 marks)

53. In the given figure, O is the centre of a circle. Prove that $\angle x+\angle y=\angle z$.

54. If two non parallel sides of a trapezium are equal then prove that it is cyclic quadrilateral.
55. In the given figure, determine a, b and c if $\angle B C D=43^{\circ}$ and $\angle B A F=62^{\circ}$.

56. In the figure, P is the centre of a circle. Prove that $\angle X P Z=2(\angle X Z Y+\angle Y X Z)$.

57. In the given figure, $A D$ is diameter of the circle whose centre is O and $A B \|$ $C D$. Prove that $A B=C D$.

58. In an equilateral triangle, prove that the centroid and the circumcentre coincide.
59. In the given figures, A, B, C and D, E, F are two sets of collinear points. Prove that $A D \| C F$.

60. In given figure, O is centre of circle and $D A B=50^{\circ}$. Calculate the value of x and y.

61. If two equal chords of a circle intersect within the circle, then prove that the segment of one chord is equal to corresponding segment of other chord.
62. Prove that if a pair of opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.
63. The bisector of angle A, B and C of a $\triangle A B C$ intersect its circum circle at D, E and F respectively. Prove that the angles of a triangle $D E F$ are $90^{\circ}-\frac{1}{2} \angle A$, $90^{\circ}-\frac{1}{2} \angle B, 90^{\circ}-\frac{1}{2} \angle C$ respectively.
64. Find the sum of the angles in the four segments exterior to a cyclic quadrilateral.
65. Let the vertex B of a triangle $A B C$ be located outside a circle and let the sides $A C$ and $C B$ of the triangle intercepts equal chords $A D$ and $C E$ with the circle. Prove that $\angle A B C$ is equal to half the difference of the angle subtended by the chords $A C$ and $D E$ at the centre.

$$
\angle A B C=\frac{1}{2}(\angle D O E-\angle A O C)
$$

66. In the adjoining figure $A C$ is diameter of a circle with centre O and chord $B D \perp A C$, intersecting each other at E. Find out the values of p, q, r in terms of x if $\angle A O D=x^{\circ}, \angle B A C=p^{\circ}, \angle A C D=q^{\circ}, \angle C B D=r^{\circ}$.

67. In the given figure $O P Q R$ is a square. A circle drawn with centre O cuts the square in X and Y. Prove that $Q X=Q Y$.

68. Prove that the opposite angles of a cyclic quadrilateral are supplementary.
69. In the given figure, $A B$ is a diameter of a circle (O, r) and chord $C D=$ radius $O C$. $A C$ and $B D$ when produced meet at P. Prove that $A P B$ is 60°.

70. In the given figure, $A B$ is chord of a circle with centre O and $A B$ is produced to C such that $B C=O B$. Also, $C O$ is joined and produced to meet the circle in D. If $\angle A C D=y^{\circ}$ and $\angle A O D=x^{\circ}$ then prove that $x=3 y$.

71. Two circles whose centres are O and O^{\prime} intersect at P. Through P, a line l parallel to $O O^{\prime}$, intersecting the circle at C and D is drawn. Prove that $C D=2 O O^{\prime}$.

72. $A B$ and $C D$ are two parallel chords of a circle which are on opposite sides of the centre O such that $A B=10 \mathrm{~cm}, C D=24 \mathrm{~cm}$ and the distance between $A B$ and $C D$ is 17 cm . Find the radius of the circle.

Long Answer type Questions (5 marks)

73. $A B$ and $A C$ are two chords of a circle of radius r such that $A B=2 A C$. If p and q are the distance of $A B$ and $A C$ from the centre, prove that $4 q^{2}=p^{2}+3 r^{2}$
74. In figure, O is the centre of the circle, $\angle B C O=30^{\circ}, A E \perp B C$ and $D O \perp A E$. Find x and y.

75. In figure, O is the centre of the circle, $B D=O D$ and $C D \perp A B$. Find $\angle C A B$.

76. Prove that the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
77. Show that if two chords of a circle bisect one another they must be diameters.
78. Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.

Chatper-9

CIRCLE
Answers

1. (a) equal
2. (a) 2 cm
3. (b) 12 cm
4. (b) 40°
5. (c) 10 cm
6. (b) 75°
7. (b) 90°
8. (d) 8 cm
9. (c) 70°
10. (d) 60°
11. (b) 50°
12. (c) $3 \sqrt{3} \mathrm{~cm}$
13. (b) 60°
14. (a) 80°
15. (a) 110°
16. (c) 50°
17. (b) 10 cm
18. (a) 35°
19. (d) 23°
20. (c) 45°
21. chord
22. semi-circle
23. 90°
24. three
25. longest
26. concentric
27. right
28. equal
29. cyclic
30. sector
31. $y=40^{\circ}$
32. 140°
33. 16 cm
34. $\mathrm{CD}=10 \mathrm{~cm}$
35. 35°
36. $A B=8 \mathrm{~cm}$
37. $\angle A B C=115^{\circ}$
38. $\angle A P B=90^{\circ}$
39. Angle by minor arc $=30^{\circ}$

Angle by major arc $=150^{\circ}$
41. $\angle B C N=70^{\circ}$
42. $\angle P S R+\angle R S T=180^{\circ} \Rightarrow \angle P S R=106^{\circ}$ reflex $\angle P O R=2 \angle P S R=212^{\circ}$
43. $\angle A O B=80^{\circ}$
$\angle A O B+\angle A O C=180^{\circ}$
$\angle A O C=100^{\circ}$
$\angle A D C=\frac{1}{2} \angle A O C$
$\Rightarrow x=50^{\circ}$
44. $A Q=\frac{1}{2} A B \Rightarrow A Q=3 \mathrm{~cm}$ In $\triangle A O Q$

$$
(O A)^{2}=(A Q)^{2}+(O Q)^{2}
$$

$$
\Rightarrow O Q=4 \mathrm{~cm}
$$

Similarly $O P=3 \mathrm{~cm}$
$P Q=7 \mathrm{~cm}$
45. $\angle A O B+\angle B O C+\angle A O C=360^{\circ}$
$\Rightarrow \angle A O C=150^{\circ}$
$\angle A B C=\frac{1}{2} \angle A O C=75^{\circ}$
46. $B D=14 \mathrm{~cm}$
47. $\angle O P R=10^{\circ}$
48. $\angle A B D+70^{\circ}+35^{\circ}=180^{\circ}$
$\Rightarrow \angle A D B=75^{\circ}$
$\angle A C B=\angle A D B=75^{\circ}$
49. $O D \| A C$
$\Rightarrow O D=\frac{1}{2} \mathrm{CA}$
$\Rightarrow C A=2 O D$
50. $A M=6 \mathrm{~cm}$
$M D=4 \mathrm{~cm}$
$A D=(6+4) \mathrm{cm}=10 \mathrm{~cm}$
51. $\triangle^{\prime} \mathrm{s} A O B \cong \triangle C O B$ (by SSS)
$\Rightarrow \angle O B A=\angle O B C$
$\Rightarrow \angle O B C$ bisects $\angle A B C$
52. $2 x+3 x=180^{\circ} \Rightarrow x=36^{\circ}$
$4 y+5 y=180^{\circ}$
$y=20^{\circ}$
53. $\angle A C B=\angle A D B$ (Angles in same segment)
$\angle z=2 \angle A C B$
$\Rightarrow \angle z=\angle A C B+\angle A D B$
$\angle y=\angle A C B+\angle C A D$
$\Rightarrow \angle z=\angle y-\angle D A C+\angle A D B$
But, $\angle A D B-\angle D A C=\angle x$
$\Rightarrow \angle x+\angle y=\angle z$
55. $a=105^{\circ}, b=13^{\circ}, c=62^{\circ}$
56. $\angle X P Y=2 \angle X Z Y$
$\angle Y P Z=2 \angle Y X Z$
$\angle X P Z=2(\angle X Z Y+\angle Y X Z)$
57. $\triangle A O Q \cong \triangle P O D$
$\Rightarrow O Q=O P($ by $C P C T)$
$\Rightarrow A B=C D$
58.

$\triangle B E C \cong \triangle B F C$
$\Rightarrow B E=C F$
$\operatorname{sim} . \triangle C A F \cong \triangle C A D$
$\Rightarrow C F=A D$
So $A D=B E=C F$
$\frac{2}{3} A D=\frac{2}{3} B E=\frac{2}{3} C F$
$G A=G B=G C$
Hence centroid and circumcentre are coincident
59. $\angle D A B+\angle B E D=180^{\circ}$

But $\angle B E D=\angle B C F$
$\Rightarrow \angle D A B+\angle B C F=180^{\circ}$
Hence $A D \| C F$
60. $\angle A O B=80^{\circ}$
$\Rightarrow x=100^{\circ}, y=130^{\circ}$
64.

$$
\begin{aligned}
& \angle 1+\angle P=180^{\circ} \\
& \angle 2+\angle Q=180^{\circ} \\
& \angle 3+\angle R=180^{\circ} \\
& \angle 1+\angle P+\angle 2+\angle Q+\angle 3+ \\
& \angle R=3 \times 180^{\circ} \\
& \Rightarrow \angle P+\angle Q+\angle R+\angle S=6 \times 90^{\circ}
\end{aligned}
$$

66. $p=90^{\circ}-\frac{1}{2} x, \quad q=\frac{1}{2} x$

$$
\begin{aligned}
r & =\frac{1}{2}\left(180^{\circ}-x\right) \\
& =90^{\circ}-\frac{1}{2} x
\end{aligned}
$$

67.

$Q R=Q P(\because \mathrm{OPQR}$ is square $)$
$\triangle O R Y \cong \triangle O P X$
$\therefore R Y=P X$
$\Rightarrow Q R-R Y=Q P-P X$
$\Rightarrow Q Y=Q X$
70. $B C=O B$
$\Rightarrow \angle B O C=y$
$\angle A B O=2 y, \angle O A B=2 y$
$(2 y)+(2 y)+(180-x-y)=180^{\circ}$
$\Rightarrow x=3 y$
71. $C A=A P$
$\Rightarrow C P=2 A P$
Similarly $B P=B D$
$\Rightarrow P D=2 P B$
$C D=2 A P+2 P B$
$C D=2 O O^{\prime}$
72. In $\triangle A L O$
$O A^{2}=O L^{2}+A L^{2}$
$r^{2}=x^{2}+5^{2}$
In $\triangle O M C$
$O C^{2}=O M^{2}+C M^{2}$
$r^{2}=(17-x)^{2}+(12)^{2}$
from (1) \& (2)
$34 x=408$
$x=12 \mathrm{~cm}$
$\therefore r=13 \mathrm{~cm}$
73.

In $\triangle A M O$
$O A^{2}=O M^{2}+A M^{2}$
$\Rightarrow\left(\frac{A B}{2}\right)^{2}=r^{2}-p^{2}(O M \perp A B)$
$(A B)^{2}=4 r^{2}-4 P^{2}$
Similarly $A C^{2}=4 r^{2}-4 q^{2}$
$A B^{2}=4 A C^{2}(\because \mathrm{AB}=2 \mathrm{AC})$
$\Rightarrow 4 r^{2}-4 p^{2}=4\left(4 r^{2}-4 q^{2}\right)$
$\Rightarrow 4 q^{2}=p^{2}+3 r^{2}$
74. $\angle E O C=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$
$\angle C O D=180^{\circ}-60^{\circ}-90^{\circ}=30^{\circ}$
$\angle C O B=2 \angle C B D=1$
$2 y=30^{\circ} \Rightarrow y=15^{\circ}$
Similarly
$\angle A B C=\frac{1}{2} \angle A O C$
$\Rightarrow \angle A B C=\frac{1}{2}\left(90^{\circ}+30^{\circ}\right)$
$\Rightarrow \angle A B C=60^{\circ}$

In $\triangle A B E$,
$60^{\circ}+x+90^{\circ}=180^{\circ}$
$x=30^{\circ}$
$x=30^{\circ}, y=15^{\circ}$
75. Since $O B=O D=B D$
$\Rightarrow \triangle O B D$ is an equilateral triangle
$\therefore \angle B O D=60^{\circ} \Rightarrow \angle A O D=120^{\circ}$
Now $\angle A C D=1 / 2 \angle A O D=60^{\circ}$
$\Rightarrow \angle C B A=60^{\circ}$
Hence $C A B=30^{\circ}$
(Angle sum property)

Practice Test

Circles

Time : $\mathbf{1} \mathbf{h r}$.

1. In fig, $\angle D A B=60^{\circ}$ and $\angle A B D=50^{\circ}$. Find $\angle A C B$.

2. A circle passes through A, B, C and D as shown in figure. If $\angle B A D=93^{\circ}$ find x.

3. The chord of a circle is equal to its radius. Find the angle subtended by this chord at the minor arc of the circle.
4. In the given figure, find x where O is the centre of the circle.

5. Prove that equal chords of a circle subtend equal angles at the centre.
6. Prove that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°.
7. In the given figure, OD is perpendicular to chord AB of a circle with centre O . If BC is a diameter then show that $\mathrm{AC}=2 \mathrm{OD}$

8. In figure, $A B$ is a chord of a circle with centre O and $A B$ is produced to C. Also, $C O$ is joined and produced to meet the circle in D. If $\angle A C D=y^{\circ}, \angle A O D=x^{\circ}$ and $x=3 y$, then prove that $B C=O B$.

CHAPTER-10

HERON'S FORMULA

Mind Map
Area of triangle (general formula) $=\frac{1}{2} \times b \times h$ where $b=$ base and $\quad h=$ height

$$
\text { Area of triangle (Herons formula) }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where s is semi-perimeter and $s=\frac{a+b+c}{2}$
a, b and c are sides of a triangles

Keys points

- When base and height of a triangle are known, then area of triangle is found using general formula.
- Herons formula is used to find area of triangle when all the three sides of triangle are known.
- All sides of an equilateral triangle are equal.
- An isosceles triangle has two equal sides while a scalene triangle has no side equal.
- The sum of all the sides is called the perimeter.
- $(s-a)+(s-b)+(s-c)=3 s-(a+b+c)=s$
- Herons formula can be used to find the area of any kind of triangle.

Very Short Answer Questions (1 mark)

1. The altitude of an equilateral triangle is 9 cm then the area of triangle is:
(a) $18 \sqrt{3} \mathrm{~cm}^{2}$
(b) $24 \sqrt{3} \mathrm{~cm}^{2}$
(c) $25 \sqrt{3} \mathrm{~cm}^{2}$
(d) $27 \sqrt{3} \mathrm{~cm}^{2}$
2. The sides of a triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . The area of triangle will be:
(a) $6 \mathrm{~cm}^{2}$
(b) $8 \mathrm{~cm}^{2}$
(c) $5 \mathrm{~cm}^{2}$
(d) $6 \mathrm{~cm}^{2}$
3. An isosceles right triangle has area $8 \mathrm{~cm}^{2}$. The length of the hypotenuse is:
(a) $\sqrt{24} \mathrm{~cm}$
(b) $\sqrt{32} \mathrm{~cm}$
(c) $\sqrt{48} \mathrm{~cm}$
(d) $\sqrt{16} \mathrm{~cm}$
4. The area of an equilateral triangle is $36 \sqrt{3} \mathrm{~cm}^{2}$. The length of each side of triangle is:
(a) 24 cm
(b) 60 cm
(c) 36 cm
(d) 12 cm
5. The base of a triangular field is three times its height. If area of field is 13.5 hectares then its base is:
(a) 900 m
(b) 600 m
(c) 1200 m
(d) 1500 m
6. The perimeter of an isosceles triangle is 32 cm . The ratio of equal sides to the base is $3: 2$. The sides of triangle are:
(a) $8 \mathrm{~cm}, 8 \mathrm{~cm}, 12 \mathrm{~cm}$
(b) $8 \mathrm{~cm}, 8 \mathrm{~cm}, 8 \mathrm{~cm}$
(c) $8 \mathrm{~cm}, 12 \mathrm{~cm}, 12 \mathrm{~cm}$
(d) $12 \mathrm{~cm}, 12 \mathrm{~cm}, 12 \mathrm{~cm}$
7. The height corresponding to the longest side of the triangle whose sides are $42 \mathrm{~cm}, 34 \mathrm{~cm}$ and 20 cm in length is:
(a) 15 cm
(b) 36 cm
(c) 16 cm
(d) 23 cm
8. For an isosceles triangle having base b and each of equal side a, its perimeter will be \qquad .
9. Two sides of a triangle are 8 cm and 11 cm and its perimeter is 32 cm . The length of third side will be \qquad .

IX - Mathematics
10. The formula used to find the area of scalene triangle is called \qquad .
11. The sides of a triangle are in ratio $2: 1: 3$ and its perimeter is 24 cm . The length of the longest side of triangle will be \qquad -
12. The perimeter of an equilateral triangle is 60 cm . Its area will be \qquad .
13. Find the area of a triangle whose base and altitude are 6 cm and 3 cm respectively.
14. The area of a triangle of base 35 cm is $420 \mathrm{sq} . \mathrm{cm}$. Find its altitude.
15. Find the area of a triangle whose base is 15 cm long and the corresponding height is 9.8 cm .
16. Find the area of an equilateral triangle with side $2 \sqrt{3} \mathrm{~cm}$.
17. Find the area of an equilateral triangle of side ' a ' units.
18. Find the area of an isosceles triangle each of whose equal sides is 13 cm and base is 24 cm .
19. The height of an equilateral triangle is 6 cm . Find its side.
20. Find the semi-perimeter of an equilateral triangle of side 2 a units.

Short Answer type-I Question (2 Marks)

21. Find the area of an equilateral triangle whose sides are 4 cm each.
22. If sum of two sides of a triangle is 17 cm and its perimeter is 30 cm , then what is the length of third side?
23. If each side of a triangle is double then how many times the perimeter of triangle increased?
24. If area of a triangle is $50 \mathrm{~cm}^{2}$ and one of its sides is 10 cm then find the length of corresponding altitude.
25. The sides of a triangle are $11 \mathrm{~cm}, 60 \mathrm{~cm}$ and 61 cm . Find the altitude to the smallest side.
26. The ratio between the sides of a triangle are $3: 5: 7$ and its perimeter is 300 cm . Find the sides of triangle.
27. Find the area of isosceles triangle whose non equal side is of 12 cm and its corresponding altitude is 7.5 cm .
28. a, b and c are the sides of a triangle. If $(s-a)=5 \mathrm{~cm},(s-b)=10 \mathrm{~cm}$ and $(s-c)=1 \mathrm{~cm}$, then find the value of a, b and c.
29. The area of an equilateral triangle is $36 \sqrt{3} \mathrm{~cm}^{2}$. Find the side of the equilateral triangle.

Short Answer Type-II Questions (3 Marks)

30. The cost of levelling a right angled triangular park is ₹ 2 per km^{2}. The cost of levelling the whole part is ₹ 2700 . If horizontal side of the park is 45 km long then find the length of longest side of the park.
31. Find the area of a triangle if $(s-a)=35,(s-b)=30$ and $(s-c)=25$ where a, b, c are sides of triangle and s is its semi-perimeter.
32. The sides of a triangular field are $51 \mathrm{~m}, 37 \mathrm{~m}$ and 20 m . Find the number of flower beds that can be prepared if each bed is to occupy $9 \mathrm{~m}^{2}$ of area.
33. Using Heron's formula, show that the area of an equilateral triangle is $\frac{\sqrt{3}}{4} x^{2}$,
where x is the side.
34. The sides of a triangle are $x, x+1,2 x-1$ and its area is $x \sqrt{10}$ sq. units. Find the value of x.
35. The perimeter of a triangle is 50 cm . One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.
36. Find the area of shaded region in the figure.

How may triangular flower beds of $6 \mathrm{~m}^{2}$ can be made from this area?
[use $\sqrt{105}=10.25$]

37. The sides of a triangular sheet are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Find the cost of painting on the sheet at the rate of $₹ 30 \mathrm{per} \mathrm{cm}^{2}$.
38. One side of a right angled triangle is 20 cm and the difference in lengths of its hypotenuses and other side is 8 cm . Find the other side and area of the triangle.
39. The perimeter of a triangle is $x \mathrm{~cm}$ and its sides are p, q and $r \mathrm{~cm}$. What will be the area of triangle? Use the Heron's formula.
40. If every side of a equilateral triangle is doubled, then find the percentage increase in the area of the triangle.

Long Answer Questions (5 Marks)

41. Find the ratio between the area of triangle $\triangle A B C$ and $\triangle D E F$.

42. While selling clothes for making flags, a shopkeeper claims to sell each piece of cloth in the shape of an equilateral triangle of each side 12 cm while actually he was selling the same in the shape of an isosceles triangle with side 12 cm , 10 cm and 10 cm . How much cloth was he saving in selling each flag?
43. A piece of land is in the shape as given in the figure, has been cut along diagonal $A C$. The two pieces of land has been distributed between Ram and Sohan. Who will get larger piece of land in terms of area and how much? [Use $\sqrt{10}=3.15]$

44. A triangular hoarding of dimensions $11 \mathrm{~m}, 6 \mathrm{~m}$ and 15 m is used for commercial activities. The hoarding yield an earning of ₹ 5000 per m^{2} per month.
Calculate the total earning by the hoarding in a month. [Use $\sqrt{2}=1.41$]
45. In the given kite ABCD is a square having diagonal 48 cm . How much paper of each colour is required to make this kite?
[Use $[\sqrt{21}=4.58]$

Chapter - 10

Heron's Formula

Answers

1. (d) $27 \sqrt{3} \mathrm{~cm}^{2}$
2. (a) $6 \mathrm{~cm}^{2}$
3. (b) $\sqrt{32} \mathrm{~cm}$
4. (d) 12 cm
5. (a) Base $=9$ hectare

$$
=900 \mathrm{~m}
$$

6. (c) $8 \mathrm{~cm}, 12 \mathrm{~cm}, 12 \mathrm{~cm}$
7. (c) 16 cm
8. $2 a+b$ units
9. 13 cm
10. Heron's formula
11. 12 cm
12. $100 \sqrt{3} \mathrm{~cm}^{2}$
13. $9 \mathrm{~cm}^{2}$
14. 24 cm
15. $73.5 \mathrm{~cm}^{2}$
16. $3 \sqrt{3} \mathrm{~cm}^{2}$
17. $\frac{\sqrt{3}}{4} a^{2}$ units 2
18. 50 cm
19. $4 \sqrt{3} \mathrm{~cm}$
20. 3 a units
21. $4 \sqrt{3} \mathrm{~cm}^{2}$
22. 13 cm
23. 4 times
24. 10 cm
25. 60 cm
26. $60 \mathrm{~cm}, 100 \mathrm{~cm}, 140 \mathrm{~cm}$
27. $45 \mathrm{~cm}^{2}$
28. $a=11 \mathrm{~cm}, b=6 \mathrm{~cm}, c=15 \mathrm{~cm}$
29. 12 cm
30. 75 km
31. $s=90$

Area $=1537.5$
32. No of flower beds

$$
=\frac{\text { Area of field }}{\text { Area of 1Flower Bed }}=34
$$

34. $S=\frac{4 x}{2}=2 x$;

Area $=$
$\sqrt{2 x(2 x-x)(2 x-x-1)(2 x-2 x+1)}$
$\Delta=x \sqrt{10}=x \sqrt{2(x-1)}$
$x=6$
35. Let the length of smallest side $=x \mathrm{~m}$
\therefore Other two sides will be $x+4$ and $2 x-6$
\therefore Perimeter of triangle $=x+x+4$ $+2 x-6$
$\Rightarrow x=13$
Area of $\Delta=109.6 \mathrm{~m}^{2}$
36. Area $=1047 \mathrm{~m}^{2}$,

No. of flower beds $=179$
37. ₹ 900
38. Let given side ' a ' $=20$, hypotenuse $=b$ other side $=c$
By Pythagoras theorem

$$
\begin{aligned}
& a^{2}=b^{2}-c^{2} \\
& \Rightarrow a^{2}=(b-c)(b+c) \\
& \Rightarrow 20^{2}=8 \times(b+\mathrm{c}) \\
& \Rightarrow b+c=50 \\
& \text { So } a=20, b=29, c=21
\end{aligned}
$$

39. $\sqrt{\frac{x}{2}\left(\frac{x}{2}-p\right)\left(\frac{x}{2}-q\right)\left(\frac{x}{2}-r\right)}$
40. 300% [Hint: Increase in area of triangle
$=$ Area of new triangle - Area of given triangle
Percentage Increase $\left.=\frac{\text { Increased Area }}{\text { Initial Area }} \times 100\right]$
41. $1: 9$
42. Area of equilateral part $=62.352 \mathrm{~cm}^{2}$

Difference $=14.352 \mathrm{~cm}^{2}$
Area of isosceles part $=48 \mathrm{~cm}^{2}$
43. Ram, $210 \mathrm{~m}^{2}$
44. ₹ $1,41,000$
40. Area of yellow part $=$ area of blue part

$$
=288 \mathrm{~cm}^{2}
$$

Required blue / yellow paper $=576 \mathrm{~cm}^{2}$
Required black paper $=229 \mathrm{~cm}^{2}$

CHAPTER-10

HERON'S FORMULA PRACTICE TEST

Time: 1 hr

1. If $(s-a)=5 \mathrm{~cm},(s-b)=10 \mathrm{~cm},(s-c)=1 \mathrm{~cm}$. Find s.
2. The sides of triangle are $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm . Find the length of its longest altitude.
3. Find the area of isosceles triangle whose equal sides are of length 15 cm each and the third side is 12 cm .
4. If each side of triangle is doubled, then find the ratio of area of new triangle thus formed and the given triangle.
5. A triangular park $A B C$ has sides $120 \mathrm{~m}, 80 \mathrm{~m}$ and 50 m . A gardner has planted some trees inside the park leaving 5 m width along each side of park. Find the area in which he planted the trees.
6. The sides of a triangle are in the ratio $25: 17: 12$ and its perimeter is 540 cm . Find the area of the triangle.
7. The length of sides of a triangle are $7 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Find the length of perpendicular from opposite vertex to the side whose length is 12 cm .
8. The cost of fencing an equilateral triangular field @ ₹ 5 per metre is ₹ 1920 . Find its area \& all sides.

CHAPTER-11

SURFACE AREAS AND VOLUMES

MIND MAP

Slant height of cone $l=\sqrt{h^{2}+r^{2}}$
Curved Surface area of cone $=\pi r l$

Total Surface area of cone $=\pi r l+\pi r^{2}$

$$
=\pi r(l+r)
$$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\text { Total Surface area of hemisphere }=3 \pi r^{2}
$$

Curved Surface area of hemisphere $=2 \pi r^{2}$

Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

Hemisphere

Total Surface area of Sphere $=4 \pi r^{2}$

Volume of Sphere $=\frac{4}{3} \pi r^{3}$

Keys points

- The surface of a solid object or shape can be flat or non-flat. The non-flat surface is known as curved surface.
- Surface Area is the area of the surface of a solid object or shape.
(i) Lateral / Curved Surface Area :- Area of the curved surface of a solid object or shape.

(ii) Total Surface Area :- Area of all the surfaces, curved and flat both, of a solid object or shape.
- Volume is the shape occupied by any solid object. For hollow objects, volume is termed as capacity.
- Surface area is a two-dimensional measurement and measured as squareunits i.e. $\mathrm{m}^{2}, \mathrm{~cm}^{2}$, whereas volume is a three-dimensional measurement and measured as cubic-units i.e. $\mathrm{m}^{3}, \mathrm{~cm}^{3}$.
- Examples of surface area are : Wrapping a gift, painting a wall, covering a bowl with a lid etc.
- Examples of volume are : Water in tank, matchboxes in a packet, soup in a bowl etc.
- A sphere has only curved surface. So, curved surface area of a sphere is also its total surface area.
- The height, slant height and radius of a cone together form a right angled triangle where height and radius are sides but slant height is the hypotenuse.
- $1 \mathrm{~m}^{3}=1000 l$ (litre)
- $1000 \mathrm{~cm}^{3}=1 l$ (litre)

Very Short Answer Questions (1 Mark)

1. If the volume of a sphere is numerically equal to its surface area. Then radius of sphere is:
(a) 1 unit
(b) 3 unit
(c) 2 unit
(d) 6 unit
2. The surface area of a solid hemisphere having radius r is:
(a) $2 \pi r^{2}$
(b) $3 \pi \mathrm{r}^{2}$
(c) $4 \pi r^{2}$
(d) $\frac{2}{3} \pi r^{3}$
3. The height of cone of diameter 10 cm and slant height 13 cm is:
(a) 12 cm
(b) 13 cm
(c) $\sqrt{69} \mathrm{~cm}$
(d) $\sqrt{194} \mathrm{~cm}$
4. The radius of a sphere is 2 r . Its volume will be:
(a) $\frac{32}{3} \pi r^{3}$
(b) $4 \pi r^{3}$
(c) $\frac{4}{3} \pi r^{3}$
(d) $\frac{8 \pi^{3}}{3}$
5. If the radius of a sphere is increased by 10% then its volume will be increased by:
(a) 11.1%
(b) 22.1%
(c) 33.1%
(d) 44.1%
6. The radius of the sphere is 7 cm . The surface area of the sphere is \qquad .
7. If the radius of a sphere is doubled then the ratio of their volume is \qquad .
8. The diameter of sphere whose surface area is $55.44 \mathrm{~m}^{2}$ is \qquad .
9. Total surface area of a cone whose radius is $\frac{p}{2}$ and slant height is $2 l$ is
\qquad -.
10. Volume of a cone $=\frac{1}{3}(\text { radius })^{2} \times$ \qquad .
11. The radius of a hemispherical balloon increases from 6 cm to 12 cm as air is being pumped into it. Find the radius of the surface area of the balloon in the two cases.
12. The radius of a sphere is 21 cm . What is the surface area of the sphere?
13. The slant height of a cone is 20 cm and its diameter is 24 cm . The height of the cone is:
(a) 12 cm
(b) 16 cm
(c) 10 cm
(d) 14 cm
14. If the radius of a sphere is halved then its surface-area will become
(a) half
(b) one-third
(c) double
(d) one-fourth
15. Find the curved surface area of a cone having slant height 29 cm and base radius 21 cm .
16. Find the volume of a sphere having surface area $616 \mathrm{~m}^{2}$.

Short Answer type-I Questions (2 Marks)

17. A conical pit of diameter 7 m is 25 m deep. Find its capacity in kilolitres.
18. The diameter of a hemispherical bowl is 21 cm . What is the quantity of milk (14 litres) it can hold?
19. A right angled triangle having sides $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm is rotated about the side 8 cm . Find the total surface area of the solid so obtained.
20. A birthday cap is in the form of a cone of radius 10 cm and height 15 cm . How much area of a sheet is required to make 10 such caps? (Use $\pi=3.14$)
21. The total surface area of a sphere and hemisphere is equal. Find the ratio of their volumes.
22. What is the volume of the largest cone that can be inscribed completely in a hollow hemispehere of radius 7 cm ?
23. Which is false? Correct the false statement.
(a) Volume of the hollow sphere $=\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
(b) Volume of a hemisphere $=\frac{2}{3} \pi r^{3}$
(c) Total surface area of a hemisphere $=3 \pi r^{2}$
(d) Curved surface area of a hemisphere $=\pi r^{2}$
24. A cone is 8.4 cm high and the radius of its base is 2.1 cm . It is melted and recast into a sphere. Find the radius of the sphere.
25. Find the area of canvas required for a conical tent of height 24 m and base radius 7 m .
26. Find the ratio of total surface area of a sphere and a hemisphere of same radius.
27. If the radius and slant height of a cone are $\frac{r}{2}$ and $2 l$ then find its total surface area.
28. A cone and a hemisphere have equal base and equal volumes. Find the ratio of their heights.

Short Answer type-II Questions (3 Marks)

29. A hemispherical bowl is to be painted from inside at the rate of $₹ 20$ per $100 \mathrm{~m}^{2}$. The total cost of painting is ₹ 30.80 . Find the inner surface area of the bowl.
30. The radius of a sphere is 10 cm . If the radius is increased by 1 cm then prove that volume of the sphere is increased by 33.1%.
31. The diameter of a hemisphere is decreased by 30%. What will be the percentage change in its total surface area?
32. The volume of a sphere is $4851 \mathrm{~cm}^{3}$. How much should its radius be reduced so that its volume becomes $\frac{4312}{3} \mathrm{~cm}^{3}$?
33. The volumes of the two spheres are in the ratio $64: 27$. Find the ratio of their surface areas.
34. Twenty Seven solid iron spheres each of radius r and surface area S are melted to form sphere with surface area S^{\prime}. Find the
(i) radius R of the new sphere.
(ii) Ratio of S and S^{\prime}.
35. The diameter of a metallic ball is 4.2 cm . What is the mass of the ball, if the density of the metal is $8.9 \mathrm{~g} \mathrm{per} \mathrm{cm}^{3}$.
36. The base radius of a cone and radius of a sphere is 12 cm . The height of the cone is 16 cm . Which of these has greater curved surface area?
37. Gautam has some balls of radius 2.1 cm . The total volume of the balls is 582.12 cm^{3}. How many balls does Gautam has?

Long Answer type Questions (5 Marks)

38. A right circular cone is 5.4 cm high and radius of its base is 2 cm . It is melted and recast into another right circular cone with radius of base as 1.5 cm . Find the equal height of the new cone. Prove that both the cones have equal volume.
39. A toy in the form of a cone mounted on a hemisphere of diameter 7 cm . The total height of the toy is 14.5 cm . Find the volume and the total surface are of the toy.
(Take $\pi=\frac{22}{7}$)

40. The slant height of a cone is 14 cm and its curved surface area is $308 \mathrm{~cm}^{2}$. Find the volume and total surface area of the cone.
41. If h, c and v respectively, are the height, the curved surface and volume of the cone then prove that $3 p v h^{3}-c^{2} h^{2}+9 v^{2}=0$
42. The curved surface area of a cone is two-third of its total surface area. If total surface area of the cone is $231 \mathrm{~cm}^{2}$ then find the volume of the cone.
43. A hemispherical steel bowl is 0.25 cm thick and its inner radius is 5 cm . Find the cost of coating the complete bowl at the rate of 0.85 per cm^{2}. (Use $\pi=3.14$)

Chapter-11

Surface Area and Volumes

Answers

1. (b) 3 units
2. (b) $3 \pi r^{2}$
3. (a) 12 cm
4. (a) $\frac{32}{3} \pi r^{3}$
5. 33.1%
6. $616 \mathrm{~cm}^{2}$
7. $1: 8$
8. 2.1 m
9. $\frac{\pi p^{2}}{4}+\pi p l$
10. height
11. $1: 4$
12. $5544 \mathrm{~cm}^{2}$
13. (b) 16 cm
14. (d) one-forth
15. $1914 \mathrm{~cm}^{2}$
16. $1437.3 \mathrm{~cm}^{3}$
17. $r=\frac{7}{2} \mathrm{~m}, h=25 \mathrm{~m}$
capacity $=\frac{1925}{6} \mathrm{~m}^{3}$

$$
=320.83 \mathrm{kl}
$$

18. Volume $=2425.5 \mathrm{~cm}^{3}$

Quantity of milk $=\frac{2425.5}{1000}$
$=2.43$ litre
19. $h=8 \mathrm{~cm}, l=10 \mathrm{~cm}, r=6 \mathrm{~cm}$ Total surface area $=\pi r(l+r)$

$$
=\frac{22}{7} \times 6 \times 16=301.7 \mathrm{~cm}^{2}
$$

20. $1570 \sqrt{13} \mathrm{~cm}^{2}$
21. $3 \sqrt{3}: 4$
22. $\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 7$ $=\frac{22 \times 49}{3}=\frac{1078}{3} \mathrm{~cm}^{3}$
23. (d) Curved surface area of a hemisphere $=\pi \mathrm{r}^{2}$
24. 2.1 cm
25. $550 \mathrm{~m}^{2}$
26. $4: 3$
27. $\pi r\left(1+\frac{r}{4}\right)$
28. $2: 1$
29. $154 \mathrm{~m}^{2}$
30. $r_{1}=10 \mathrm{~cm} \Rightarrow v_{1}=\frac{4}{3} \pi(10)^{3}$
$r_{2}=11 \mathrm{~cm} \Rightarrow v_{2}=\frac{4}{3} \pi(11)^{3}$
Increase in volume of sphere

$$
\begin{aligned}
=\left(\frac{v_{2}-v_{1}}{v_{1}} \times 100\right) \% & =\frac{331}{1000} \times 100 \% \\
& =3.31 \%
\end{aligned}
$$

31. $r=0.7 \mathrm{r}$

New diameter of hemisphere $=0.7 \mathrm{~d} ;$ radius $=0.7 \frac{\mathrm{~d}}{2}$
Decrease in total surface area $=\left[\frac{3 \pi\left(\frac{d}{2}\right)^{2}-3 \pi\left(\frac{0.7 d}{2}\right)^{2}}{3 \pi\left(\frac{d}{2}\right)^{2}} \times 100\right] \%$

$$
=0.51 \times 100=51 \%
$$

32. $V_{1}=\frac{4}{3} \pi R^{3}=4851 \Rightarrow R=\frac{21}{2}=10.5 \mathrm{~cm}$
$V_{2}=\frac{4}{3} \pi r^{3}=\frac{4312}{3} \Rightarrow r=7 \mathrm{~cm}$
Decrease in radius $=10.5-7=3.5 \mathrm{~cm}$
33. $\frac{\frac{4}{3} \pi r_{1}^{3}}{\frac{4}{3} \pi r_{2}^{3}}=\frac{64}{27} \Rightarrow\left(\frac{r_{1}}{r_{2}}\right)=\frac{4}{3}$

Ratio of surface area $=\frac{4 \pi r_{1}^{2}}{4 \pi r_{2}^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=16: 9$
34. (1) $R=3 r \quad$ (2) $S: S^{\prime}=1: 9$
35. 345.39 g
36. CSA of hemisphere $=288 \pi \mathrm{~cm}^{2}$
$l=20 \mathrm{~cm}$,
CSA of cone $=240 \pi \mathrm{~cm}^{2}$
So, hemisphere has more CSA.
37. 15 balls
38. Volume of new cone $=$ Volume of old cone
$\Rightarrow \pi(1.5)^{2} \times h=\pi(2)^{2} \times 5.4$
$\Rightarrow h=9.6 \mathrm{~cm}$
Volume difference $=\frac{1 \pi}{3}(5.4 \times 2 \times 2-1.5 \times 1.5 \times 9.6)=0$
39. Volume of toy $=$ CSA of (cone + hemisphere $)=231 \mathrm{~cm}^{3}$ Total surface area of toy $=204.05 \mathrm{~cm}^{2}$
40. radius $r=7 \mathrm{~cm}$

TSA $=462 \mathrm{~cm}^{2}$
Volume $=\frac{1078}{\sqrt{3}} \mathrm{~cm}^{2}$
41. Let r - radius and l - Slant height
$l=\sqrt{r^{2}+h^{2}}, \quad v=\frac{1}{3} \pi r^{2} h, c=\pi r l$
$\therefore 3 \pi v h^{3}-\mathrm{c}^{2} h^{2}+9 v^{2}$
$=3 \pi \times \frac{1}{3} \pi r^{2} \mathrm{~h} \times h^{3}-(\pi r l)^{2} h^{2}+9\left(\frac{1}{3} \pi r^{2} h\right)^{2}$
$=\pi^{2} r^{2} h^{4}-\pi^{2} r^{2} l^{2} h^{2}+\pi^{2} r^{4} h^{2}$
$=\pi^{2} r^{2} h^{4}-\pi^{2} r^{2} h^{2}\left(r^{2}+h^{2}\right)+\pi^{2} r^{2} h^{2}$
$=\pi^{2} r^{2} h^{4}-\pi^{2} r^{4} h^{2}-\pi^{2} r^{2} h^{4}+\pi^{2} r^{4} h^{2}=0$
42. $\mathrm{CSA}=\frac{2}{3} \mathrm{TSA} \Rightarrow \mathrm{CSA}=154 \mathrm{~cm}^{2}$

Also CSA $+\pi r^{2}=$ TSA $\Rightarrow \pi r^{2}=77 \mathrm{~cm}^{2}$

$$
\Rightarrow r^{2}=\frac{49}{2} \mathrm{~cm}^{2}
$$

Now CSA $=154 \mathrm{~cm}^{2} \Rightarrow l=7 \sqrt{2} \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times \frac{49}{2} \times 7 \sqrt{2}=\frac{539 \sqrt{2}}{3} \mathrm{~cm}^{3}$
43. Inner radius $r=5 \mathrm{~cm}$; Outer radius $R=5.25 \mathrm{~cm}$

TSA of bowl $=$ Outer SA + Inner SA + Area of thickness

$$
\begin{aligned}
& =2 \pi R^{2}+2 \pi r^{2}+\left(\pi R^{2}-\pi r^{2}\right) \\
& =2 \mathrm{p}\left(R^{2}+r^{2}\right)+\pi\left(R^{2}-\mathrm{r}^{2}\right) \\
& =256.7 \mathrm{~cm}^{2} \text { (approx) }
\end{aligned}
$$

Cost of coating $=₹ 218.19$

CHAPTER-11

SURFACE AREA AND VOLUMES

 PRACTICE TESTTime: 1 hr

1. The volume of a sphere is $310.4 \mathrm{~cm}^{1}$. Find its radius.
2. Three spheres of radii $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$ are melted to form a new sphere. Find the radius of the new sphere.
3. The ratio of radius and slant height of a cone is $4: 7$. If the curved surface area of cone is $192 \mathrm{~cm}^{2}$ then find its radius.
4. A semicircular sheet of paper of diameter 14 cm is bend to form a conical cup. Find the capacity of the cup.
5. The seed of a corn has dimensions $1.8 \mathrm{~cm} \times 0.8 \mathrm{~cm} \times 0.2 \mathrm{~cm}$. The height of the corn-tube is 13.7 cm and its radius is 4.2 cm . Assuring that the corn seeds are of same size, find the number of seeds on the corn-tube.
6. The radius of a sphere is 5 cm . If the radius is increased by 20% then how much percentage increase will be in the volume?
7. The surface area of the cone is double of the other and slant height of the second cone is double of the first cone. Find the ratio of their radii.
8. Ajay kept ice-cream in a hemi spherical bowl of 28 cm diameter. He filled ice-cream in ice-cream cones of 8 cm diameter and height 6 cm . A hemisphere of diameter 8 cm is also kept over the cone. In how many cups the ice-cream is filled?

CHAPTER-12

STATISTICS

MIND MAP

Key points

- In statistics we study collection, presentation, analysis and interpretation of data.
- Facts or figures collected with a definite purpose are called data.
- The number of times an observation occurs in the given data is called frequency of the observation.
- Class intervals are the groups in which all observations are divided.
- For class-interval 20-30, 30 is called upper class limit and 20 is called lower class limit.
- Class mark $=\frac{\text { Lower class limit }+ \text { upper class limit }}{2}$

Very Short Answer type Questions (1 Mark)

1. Facts or figures, collected with a definite purpose are:
(a) Frequency
(b) Data
(c) Tally Marks
(d) Bars
2. To compare this years result with last years result, teacher went to the class and collected this years number of distinctions from the students. For last years number of distinctions, she opened the result register and wrote the required number of distinctions. The data collected by her from the students and register respectively, are examples of:
(a) Primary data \& secondary data
(b) Primary data \& raw data
(c) Both primary data
(d) Secondary data \& Primary data
3. How is histogram different from bar graph.
(a) Histogram is same as bar graph but joined together.
(b) no difference
(c) Class- intervals is used in histogram.
(d) A and B both are correct.

IX - Mathematics
156
4. Which of the figures represent a histogram correctly:
(a)

(b)

(c)

(d)

5. In a histogram when we join midpoints of the tops of the rectangles (bars) we get:
(a) Bar Graph
(b) line graph
(c) Frequency Polygon
(d) Pie graph
6. To draw a frequency polygon, we need \qquad of the class interval for x -axis and frequency of the respective class for y -axis.
(a) upper limit
(b) lower limit
(c) class-mark
(d) range
7. In a continuous frequency distribution, class mark of a class is 15 and lower limit is 13 , then its upper limit is:
(a) 16
(b) 14
(c) 13
(d) 17
8. If class mark of a class-interval is 8.5 and the class size is 5 , then the class limits of the corresponding class-interval is:
(a) 6.5-11.5
(b) 6-11
(c) $5.5-10.5$
(d) 7-12
9. Let x be the class mark and I be the upper limit of a class-interval in a continuous frequency-distribution.
The lower limit of the class is:
(a) $2 x+y$
(b) $2 x-y$
(c) $x-y$
(d) $x+y$
10. The difference between the highest and lowest values of the data is called
\qquad of that observations.
11. The marks of 5 students in a subject out of 50 are $32,48,50,27$ and 37 , the range is \qquad -.
12. A set of data contains 64 as the highest value and its range is 13 , the lowest value of the data is \qquad -.
13. The mid point of a class is called \qquad .
14. The class mark of the class interval 4.7-6.3 is \qquad .
15. Class size of class intervals $5.5-15.5,15.5-25.5,25.5-35.5$ is \qquad .

Short Answer type-I Questions (2 Marks)

16. If class mark of a class-interval is 18.5 and the class size is 5 , find the class limit of the corresponding class interval.
17. In a continuous frequency distribution, class mark of a class is 15 and lower limit is 13 . Find its upper limit.
18. The class marks of a continuous distribution are $3.05,3.15,3.25,3.35,3.45$, and 3.55. Find the class interval corresponding to the class mark 3.35
19. The weight (in kg) of 25 students are given below $35,38,36,37,38,35,37$, $36,35,38,36,36,35,35,38,37,35,36,38,38,35,35,36,38,37$
Complete the following frequency table:
Weights : 353637
Frequency : \qquad
\qquad
\qquad
20. The class marks of a distribution are $104,114,124,134$. Determine the class size and the class limits.
21. Following data gives the number of children in 30 families.
$2,1,0,3,4,2,4,3,0,1,2,4,5,3,2,2,2,1,1,1,0,2,0,3,2,1,0,4,5,1$ represent it in the form of a frequency distribution.

Short Answer type-II Questions (3 Marks)

22. Given below are the runs scored by 18 players in one day cricket match:
$3,7,16,27,46,122,73,24,7,3,0,8,46,3,99,45,28,79$
Form a frequency table for above data with equal class intervals one of these being 0-25 (excluding 25). Which class has maximum frequency?
23. Time taken in seconds by 25 students in an examination to solve certain questions is given below.
$20,16,20,27,27,28,30,33,37,50,40,42,46,28,43,46,46,48,49,52,58$, 59, 60, 64, 52
By taking class interval of size 10 , make a frequency distribution table. Which class has minimum frequency?
24. Draw the histogram from the following data

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	8	15	20	12	16

25. Given below is a cumulative frequency distribution table showing the marks scored by 50 students of a class.

Marks	Number of students
Below 20	17
Below 40	22
Below 60	29
Below 80	37
Below100	50

Form a frequency table from the above data.
26. Given below are the seats won by different political parties in a state assembly election.

Political Party	A	B	C	D	E	F	G
Seat won	75	55	37	29	10	37	50

Draw a bar graph for above data.

Long Answer type Questions (5 Marks)

27. Given below is the data of students who participated in different activities.

Activity	Sports	Meditation	Yoga	Walking
No. of Girls	42	35	100	120
No. of Boys	90	64	130	86

Draw double bar graph. Which has maximum number of boys?
28. Draw histogram to represent the data given below.

Age (in years)	No of children
$1-2$	5
$2-3$	4
$3-5$	10
$5-7$	12
$7-10$	9
$10-15$	10
$15-17$	8

29. Construct a histogram from the following distribution of total marks obtained by 40 students of IX class in a test.

Class Marks (mid point)	5	15	25	35	45	55
No. of Students	3	7	6	14	8	2

30. For the following data, draw a frequency polygon.

Marks obtained	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of Students	6	8	3	9	4

31. Draw a frequency polygon for the following data

Marks	Frequency
$0-10$	03
$10-20$	09
$20-30$	18
$30-40$	16
$40-50$	12
$50-60$	02

32. The blood group of 30 students of class IX are recorded as follows. If O is a universal donar and AB is a universal recipient then -
$A, B, B, B, O, B, B, A, A B, A, O, B, O, A B, O$
$A B, A B, B, A B, B, A, O, A B, B, A, O, A B, A, A, A B$
(a) Make a frequency distribution table for the above data.
(b) Mr . ' X ' meets an accident and needs blood. His blood group is AB.

How many of these students are universal donors and how many are universal recipient?
33. A doctor suggests two ways for treatment of a particular disease one by taking medicine only and other by doing meditation and yoga.

Age group	No. of patients taking medicines	No. of patients doing meditation and yoga
$20-30$	20	05
$30-40$	30	12
$40-50$	42	20
$50-60$	40	30
$60-70$	30	20

Represent the data of both the ways of treatment on the same graph by two frequency polygons.
34. The following table shows number of voluntary blood donors per day in voluntary blood donation camp organized in Delhi.

Days	No. of Donors
Sunday	100
Monday	80
Tuesday	110
Wednesday	80
Thursday	60
Friday	70
Saturday	120

(i) Draw a bar graph showing above information.
(ii) On which day donation was maximum and on which day it was minimum?

Chapter-12
 STATISTICS Answers

1. (b) Data
2. (d) Secondary data and Primary data
3. (c) Class intervals is used in histogram.
4. (b)
5. (c) Frequency polygon
6. (c) class mark
7. (d) 17
8. (b) 6-11
9. (b) $2 x-y$
10. Range
11. 23
12. 51
13. class mark
14. 5.5
15. 10
16. 16-21
17. 17
18. 3.3-3.4
19. Weight 35363738

Frequency $8 \quad 6 \quad 4 \quad 7$
20. class size $=10$
class limits $=99-109,109-119,119-129,129-139$
21.

No. of Children	Tally Marks	No. of Families		
0	\mathbb{N}	5		
1	$\mathbb{N} \\|$	7		
2	$\mathbb{N}\\|\\|$	8		
3	$\\|\\|$	4		
4	$\\|\\|$	4		
5	$\\|$	2		

IX - Mathematics
22.

Class-Interval	Tally Marks	Frequency			
$0-25$	$\mathbb{N}\\|\\|\\|$	9			
$25-50$	\mathbb{N}	5			
$50-75$	\mid	1			
$75-100$	$\\|$	2			
$100-125$	\mid	1			

$0-25$ has maximum frequency.
23.

Class-Interval	Tally Marks	Frequency			
$15-25$	$\\|\\|$	3			
$25-35$	$\mathbb{N} \mid$	6			
$35-45$	$\\|\\|\\|$	4			
$45-55$	$\mathbb{N}\\|\\|$	8			
$55-65$	$\\|\\|\\|$	4			

15-25 has minimum frequency.
24.

25.

Class-Interval	Frequency
$0-20$	17
$20-40$	5
$40-60$	7
$60-80$	8
$80-100$	13

26.

Chapter - 12

STATISTICS
Practice Paper
Time : $\mathbf{1} \mathbf{~ H r}$.
M.M. 20

1. Write class limits of the following class marks:

47, 52, 57, 62, 67, 72, 77
2. Class-mark of class interval $8-15$ is \qquad
3. Following data gives the number of children in 20 families:
$1,2,0,3,2,1,0,4,3,2,2,0,1,2,3,2,2,0,4,3$
Represent it in the form of a frequency distribution.
4. The class marks of a distribution are $25,35,45,55,65$. Determine the class size and the class limits.
5. Time taken in seconds by 25 students in an examination to solve certain question is given below.
$18,22,17,25,27,33,35,19,21,20,17,16,25,27,33,34,38,42,43,41,37$, 22, 19, 44, 36
By taking class intervals of size 10 , make a frequency distribution table.
6. Given below is a cumulative frequency distribution table showing the marks scored by 50 students of a class.

Marks	Below 20	Below 40	Below 60	Below 80	Below 100
No. of students	17	22	29	37	50

Form a frequency table from the above data.
7. Draw the histogram from the following data

Age (in yrs)	$18-20$	$20-22$	$22-24$	$24-26$	$26-28$	$28-30$
No. of persons	5	4	6	9	7	2

8. Given below is the data of students who participated in different activities. (5)

Activity	Sports	Meditation	Yoga	Walking
No. of girls	25	32	17	27
No. of boys	35	18	22	25

Draw double bar graph. Which Activity has maximum number of girls and which has minimum number of boys.

ASSERTION REASONING BASED QUESTIONS

In the following questions, there is one Assertion (A) and one reason (R). Choose the correct answer of these questions from the four options (a), (b), (c) and (d) given below:
(a) Both A and R are correct and R is the correct explanation of the assertion
(b) Both A and R are correct but R is not the correct explanation of the assertion
(c) A is true but R is false.
(d) A is false but R is true.

1. Assertion (A) : $\sqrt{5}$ is an irrational number

Reason (R) : A number is called irrational, if it can not be written in the form p / q, where p and q are integers and $q \neq 0$.
2. Assertion (A):7 is rational number.

Reason (R) : The square root of all rational numbers is irrational.
3. Assertion (A) : 0.258...... is a terminating decimal.

Reason (R) : A decimal in which a digit or a set of digits is repeated periodically is called a repeating or a recurring decimal.
4. Assertion (A) : The degree of the polynomial $\left(x^{2}-2\right)(x-3)(x+4)$ is 3 .

Reason(R) : A polynomial of degree 3 is called a cubic polynomial.
5. Assertion(A) : -7 is a constant polynomial.

Reason (R) : The degree of a constant polynomial is zero.
6. Assertion(A) : The expression $3 x^{4}-4 x^{3 / 2}+x^{2}=2$ is not a polynomial because the term $-4 x^{3 / 2}$ contains a rational power of x.
Reason (R) : The highest exponent in various terms of an algebraic expression in one variable is called its degree.
7. Assertion $(A):$ The point $(-2,0)$ lies on the y-axis and $(0,4)$ lies on the x-axis. Reason (R) : Every point on the x-axis has zero distance from the x-axis and every point on the y-axis has zero distance from the y-axis.
8. Assertion (A) : The abscissa of a point $(5,2)$ is 5.

Reason (R) : The perpendicular distance of a point from the y-axis is called its abscissa.
9. Assertion (A) : If the ordinate of a point is equal to its abscissa, then the point will lie either in the first quadrant or in the fourth quadrant.

Reason (R) : A point whose both coordinates are negative will lie in the third quadrant.
10. Assertion (A): The values of a, b and c in linear equation $9 y=2 x+9$ are 2, -9 and 9 respectively.
Reason (R) : The general form of linear equation in two variables is $a x+b y+c=0$
11. Assertion (A) : The equation $9 x=100$ is parallel to y-axis.

Reason (R) : The graph of $x=\mathrm{a}$ is a straight line parallel to the y-axis
12. Assertion (A) : $x+y=9$ has only two solutions $(0,9)$ and $(9,0)$.

Reason (R) : Every linear equation in two variables has infinitely many solutions.
13. Assertion (A) : Parallel lines are those lines which never intersect each other.

Reason (R) : Two or more lines can be parallel.
14. Assertion (A) : An infinite number of lines can be drawn to pass through a given point.
Reason (R) : A line segment has two end-points.
15. Assertion (A) : Raj and Ali have the same weight. If each gain weight by 3 kg , then second Euclid's axiom will be used to compare their weights.
Reason (R) : According to Euclid's second axiom, when equals are added to equals the wholes are equal.
16. Assertion (A) : An angle exceeds its complement by 20°, then the angle is 52°.
Reason (R) : Two angles are said to be complementary if the sum of the measures of their angles is 90°.
17. Assertion (A) : If $a=35^{\circ}$ and $b=155^{\circ}$, then angles ' a ' and ' b ' form a linear pair of angles.
Reason (R) : The sum of a linear pair of angles is always 180°.
18. Assertion (A) : If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio $5: 4$, then the larger of the two angles is 100°.
Reason (R) : If a transversal intersects two parallel lines, then the sum of the interior angles on the same side of the transversal is 180°.
19. Assertion $(\mathrm{A}):$ If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by SSS congruence rule then $\mathrm{AB}=\mathrm{QR}$.

Reason (R) : If two triangles are congruent then corresponding parts of congruent triangles are equal.
20. Assertion (A) : Two angles measures a° and $3 a-80^{\circ}$. If each angle is opposite to equal sides of an isosceles triangle, then the value of a is 40°.
Reason (R) : The sides opposite to equal angles of a triangle are equal.
21. Assertion : All the sides of a square are of equal length.

Reason (R) : All squares are congruent.
22. Assertion(A) : The angles of a quadrilateral are $x^{\circ},(x-10)^{\circ},(x+30)^{\circ}$ and $(2 x)^{\circ}$. The smallest angle is equal to 58°.
Reason(R) : The sum of the angles of a quadrilateral is 360°.
23. Assertion(A) : The adjacent sides of a quadrilateral have one common point.

Reason(R) : The opposite sides of a quadrilateral have two common point.
24. Assertion(A) : Every square is rhombus.

Reason(R) : Every rhombus is a square.
25. Assertion (A) : In the figure, $\angle \mathrm{ACB}=50^{\circ}$.

Reason (R) : The angle in the semicircle is a right angle.

26. Assertion (A): The part of a circle cut from the chord is sector of the circle.

Reason (R) : A sector of a circle is the region between its radii and arc.
27. Assertion (A) : In figure, PQRS is a cyclic quadrilateral.

Reason (R) : The opposite angles of a cyclic quadrilateral are supplementary.

IX - Mathematics
28. Assertion (A) : If the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$ and 23 cm then the value of ' s ' is 40 cm .
Reason (R) : ' s ' is the semi-perimeter of the triangle.
29. Assertion (A) : The area of an equilateral triangle having side a is given by $\frac{\sqrt{3}}{4} a^{2}$.

Reason (R) : The area of an equilateral triangle cannot be found using Heron's formula.
30. Assertion (A) : The area of the given right angled triangle is $210 \mathrm{~cm}^{2}$.
Reason (R) : The general formula to find the area of triangle is
 $\sqrt{\frac{1}{2}} \times$ base \times height
31. Assertion (A): If the curved surface area of a sphere is $16 \pi^{2}$, then the radius of the sphere is $2 r$.
Reason (R) : The volume of a sphere is $\frac{4}{3} \pi r^{3}$.
32. Assertion (A) : The slant height of a cone is $l=h^{2}-r^{2}$, where h is the height and r is the radius
Reason (R) : The slant height l, height h and radius r of a cone are the sides of a right angled triangle.
33. Assertion (A) : The total surface area of the hemisphere is $24.12 \mathrm{~cm}^{2}$

Reason (R) : The diameter of the hemisphere is 3.2 cm .
34. Assertion (A) : Range $=$ Maximum value - Minimum value

Reason (R) : The range of the first 6 multiples of 6 is 9 .
35. Assertion (A) : The class mark of the class interval 90-120 is 105.

Reason(R) : Class mark $=\frac{1}{2}$ (upper limit + lower limit)
36. Assertion(A) : For class intervals 10-20, 20-30, 20 is included in interval 20-30.

Reason(R) : The number is always included in the lower limit of the class interval.

ANSWERS
 Assertion Reasoning Based Questions

1. (a) Both A and R are correct and R is the correct explanation of the assertion
2. (c) A is true but R is false.
3. (d) A is false but R is true.
4. (d) A is false but R is true.
5. (a) Both A and R are correct and R is the correct explanation of the assertion.
6. (b) Both A and R are correct but R is not the correct explanation of the assertion.
7. (a) Both A and R are correct and R is the correct explanation of the assertion.
8. (a) Both A and R are correct and R is the correct explanation of the assertion
9. (d) A is false but R is true.
10. (a) Both A and R are correct and R is the correct explanation of the assertion.
11. (a) Both A and R are correct and R is the correct explanation of the assertion.
12. (d) A is false but R is true.
13. (b) Both A and R are correct but R is not the correct explanation of the assertion.
14. (b) Both A and R are correct but R is not the correct explanation of the assertion.
15. (a) A and R are correct and R is the correct explanation of the assertion.
16. (a) Both A and R are correct and R is the correct explanation of the assertion.
17. (a) Both A and R are correct and R is the correct explanation of the assertion.
18. (c) A is true but R is false
19. (c) A is true but R is false.
20. (d) A is false but R is true.
21. (a) Both A and R are correct and R is the correct explanation of the assertion.
22. (c) A is true but R is false.
23. (a) Both A and R are correct and R is the correct explanation of the assertion.
24. (c) A is true but R is false.
25. (c) A is true but R is false.
26. (c) A is true but R is false.
27. (d) A is false but R is true.
28. (b) Both A and R are correct but R is not the correct explanation of the assertion.
29. (d) A is false but R is true.
30. (c) A is true but R is false.
31. (c) A is true but R is false.
32. (b) Both A and R are correct but R is not the correct explanation of the assertion.
33. (d) A is false but R is true.
34. (a) Both A and R are correct and R is the correct explanation of the assertion.
35. (c) A is true but R is false.
36. (a) Both A and R are correct and R is the correct explanation of the assertion.
37. (a) Both A and R are correct and R is the correct explanation of the assertion.

CASE STUDY BASED QUESTIONS

1. Eco-club of a school decided to develop a garden of the school and planted three types of plants A, B and C Number of plant A be x and number of plant B is same as number of plant C. If total number of plant is 100 . Answer the following questions -

(i) Write the correct representation of the above situation in the form of linear equation.
(ii) If number of plants of type A is 50 , then find number of plant of type B.
(iii) If number of plants of type A and B together is 75, then find number of plant of type C.
(iv) Find the number of plants of type C, if number of plants of type is 60 .
2. The RWA of a locality is running a lending library to develop the habit of reading books among society. To run this library they change a fixed amount of $₹ 10$ for first five days for a book and ₹ 3 for each day there after.

(i) If you borrow the book for 7 days what amount you will have to pay?
(ii) If you borrow the book and paid total amount as ₹ 40 , then find the number of days for which book was borrowed.

IX - Mathematics
(iii) Find the linear equation to represent the condition by taking x as total number of days $(x \geq 5)$ and total amount paid as ₹ y.
(iv) In the linear equation, if $x=7$ then find the value of y.
3. During Covid-19 door to door survey, A front line health worker recorded the temperature of the family of five members, their name and age is given below.

The linear equation that convert temperature from Fahrenheit $\left(\mathrm{F}^{\circ}\right)$ to Celsius (C°) is given by

$$
C=\frac{5 F-160}{9}
$$

(i) If temperature of Uma is 97.7°, then find her temperature in C°.
(ii) If temperature of Raj Kumar is $37^{\circ} \mathrm{C}$, then find his temperature in F.
(iii) If Celsius is taken on x -axis and Fahrenheit is taken on y -axis, then graph will not pass through which quadrant.
(iv) If normal temperature of a human body lies between $36.5^{\circ} \mathrm{C}$, and $37.5^{\circ} \mathrm{C}$ then in Fahrenheit temperature will lie in which range?
4. Rashmi was making a toy butterfly with sticks for her younger sister. She arranged the sticks as shown in figure. $A B$ and $C D$ are two sticks intersecting (joined) at O and a third stick $O P$ is also joined to hold the toy butterfly.

Based on the above information, answer the following questions:-

(i) At what angle does Rashmi inclined the two sticks $A B$ and $C D$?
(ii) If the sticks AB and CD of equal lengths 10 cm are joined at the mid point, then find the value of $O A$.
(iii) Find the value of y and z in the figure.
(iv) Find the value of x and also find $x+4 y$.
5. Four students Shreya, Khushi, Vaibhav and Sushant of Class-IX are selected in Eco club of the school for plantation work. Shreya and Vaibhav planted a row of jasmine plants as show in figure with line $A B$. Now Khushi and Sushant want to plant another row $C D$ of sunflower plants parallel to jasmine plants row. Also there is a pipeline $P Q$ passing through $A B$ and $C D$.
Based on the above information, answer the following questions:-

(i) At what angle with $P Q$ should Khushi and Sushant plant row $C D$ to make it parallel to row $A B$?
(ii) Which type of angle is formed by pair of x and y ?
(iii) What will be the value of x and y ?
(iv) What will be the sum of angle between AB and CD marked as x and y ? What will be the value of $2 x+y$?
6. Two cars are moving on two parallel roads represented as $A B$ and $C D$ respectively in the given figure. First car reached at point E and takes a turn towards its right at an angle of 50°. At the same time, second car reaches at point F and takes a turn towards its left at an angle of 60°. They both meet at a point G.
Based on the above information and given figure, answer the following questions (without considering the width of the roads)

(i) What will be the measure of angle x marked in the figure?
(ii) What will be the measure of $\angle E G F$ marked as y ?
(iii) What will be the measures of reflex $\angle E G F$? If $E F$ is joined, what type of triangle will $E G F$ made ?
7. The Egyptian pyramids are ancient structures located in Egypt. The pyramid of Khufu is the biggest - Egyptian pyramid. It is one of the seven wonders of the Ancient world still in existence.

A pyramid is a structure whose outer surface are triangular and converge to a single step at the top. The base of pyramid can be triangle, quadrilateral or any
polygon. Geeta a mathematics student visits Egypt and observes the pyramid (shown in the figure)
Based on the above information answer the following questions:
(i) Name the triangle which is congruent to $\angle A B C$
(ii) By which property triangles are congruent.
(iii) Which side BC will be equal to?
(iv) Using CPCT show all congruent parts?
8. Sanjana and Anshu are two friends, both of them are fond of eating chips. Once they were eating triangular chips and suddenly Sanjana noticed that all the chips look alike and she recalled the chapter of triangles that had been taught by the teacher in school.
She decided to measure the sides of the chips and she founds out that all chips were of same measurement $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm . As shown in figure.
Based on the information given above answer the following questions :
(i) Which type of triangle were the chips?

(ii) Were the triangular chips congruent if yes, which property was used?
(iii) $B C=$ \qquad
(iv) $C A=$ \qquad
9. Rohita wants to print her dress as pattern show in the figure

(i) Rohita wants to order a block of shape $A B C D$. What shapes should Rohita mention to the carpenter for a wooden block for printing $A B C D$?

IX - Mathematics
(ii) She wants to colour two pairs of parallel lines with same shade. Write any two such pairs
(iii) Rohita needs to know the measure of $\angle A F Y$ to construct $\angle A F Y$. What should be $\angle A F Y$?
10. Class IX-C wants to decorate the display board of their class. They are using following concepts for cutting paper shapes for decoration-
(1) A quadrilateral is called a parallelogram if - Both the pairs of opposite sides are equal.
(2) In a parallelogram - (a) opposite angles are equal (b) Adjacent angles are supplementary
(3) In a parallelogram (a) diagonals bisect each other
(i) To decorate the border of the board they want to cut shapes like parallelogram $A B C D$, using sheets of different colors. What should length of $C D$ and BC \qquad ?

(ii) To cut parallelogram $A B C D$ they fixed $\angle D=60^{\circ}$. What should be $\angle B$ to get parallelogram ABCD ?

(iii) What should be $\angle A$ to get parallelogram $A B C D$?

(iv) Some of the parallelograms were cut to get triangles such as $A E F, A E D$ $C E D$ and $B E C$ to design flowers at the corner of the board. If $B D$ is kept 8 cm long and $A C$ is 6 cm then what should be length $A E$?
11. (1) A parallelogram is called a Rectangle if one of its angle is 90°. It makes all the angles of the rectangle 90°. Its diagonals of the rectangle become equal and bisect each other.
(2) A parallelogram is called a square if one of its angles is 90°. and one pair of adjacent sides are equal. it makes all the angles of the square as 90°. and all the sides equal. The diagonals of a square become equal and bisect each other at 90°.

Sahil is using above learnings to design a wall-hanging. He is using wires to structure a frame and then is going to wrap up wool around the wires.
(i) The first frame he structured from wires is rectangle $A B C D$, as shown in figure. if the diagonal wire is 7 cm and side is 6 cm then what should be length of BC to get required rectangle?

(ii) What should be length of wire $B D$?
(iii) The second frame is square $E F G H$. He has a left out piece of wire having length 8 cm . He wants to take this piece as diagonal of $E F G H$ i.e., $\mathrm{GE}=8$ What should be the length of wire HF?

(iv) What should be the length of wire EF?
12. A farmer has a circular garden as shown in the picture. He has different types of trees, plants and flower plants in his garden. In the garden, there are two mango trees A and B at a distance of $\mathrm{A} B=10 \mathrm{~m}$. Similarly, the garden has two Litchi trees at the same distance of 10 m as shown at C and $D . A B$ subtends $\angle A O B=80^{\circ}$ at the center O. The perpendicular distance of $A C$ from centre is 5 cm and the radius of the garden is 13 m .

(i) What is the value of $\angle C O D$?
(ii) What is the distance between mango tree A and Litchi tree C ?
(iii) If $\angle B O D=70^{\circ}$ then show that $\angle C A B=75^{\circ}$.
(iv) What is the value of $\angle O C D$?
13. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in hand to talk to each other as shown in figure. $A P, B Q$ and $C R$ are the medians of triangle $A B C$.

(i) What is the length of $A G$?
(ii) What is the length of $A P$?
(iii) Find the measure of angle $\angle B G C$ and $\angle A B Q$.
(iv) Find length $A B$.
14. Three girls Reshma, Salma and Mandeep are playing a game by standing on a circle of radius 5 m at R, S and M respectively as shown in figure. Reshma throws a ball to Salma, Salma to Mandeep and Mandeep to Reshma. The distance between Reshma and Salma and between Salma and Mandeep is $6 \mathrm{~cm} . O$ is the centre of the circle.

(i) Find the ratio $\angle M O S: \angle M R S$.
(ii) Find the length of perpendicular from O to the chord $S M$.
(iii) Find $O P$.
(iv) What is the distance between Reshma and Mandeep?
15. During a practical activity in mathematics lab, students were using circular Geo-board. The angle subtended by $\overparen{B C}$ at the centre is $\left(2 a+50^{\circ}\right)$.

(i) What is the measure of $\angle B A C$?
(ii) If $a=30^{\circ}$, then find the measure of $\angle B A C$.
(iii) If $a=50^{\circ}$, then find reflex $\angle B O C$.
(iv) The radius of the circle is 10 cm and $a=50^{\circ}$, find the length of $B C$.
16. Sarla Devi has a triangular field with sides $240 \mathrm{~m}, 200 \mathrm{~m}$, and 360 m , where she grew wheat. In another triangular field with sides $240 \mathrm{~m}, 320 \mathrm{~m}$ and 400 m adjacent to the previous field, she wanted to grow potatoes in one part and onions in the other part.

Based on the above information, answer the question:
(i) What is the area of the wheat field?
(ii) What is the area of the field used for growing potatoes?
(iii) What is the area of the field used for growing onions? Find the ratio of the areas of the fields used for growing potatoes and onions.
(iv) What will be the total area of land she has? Express the area in hectare also.
17. During summer vacations, Rohit was getting bored due to lockdown in his city. Because of the COVID pandemic, he couldn't go out to play with his friends. His mother suggested him to start making some origami craft material. He learn origami craft through Internet and made a puppy as shown in figure.

Based on the above information and measurement of different parts of the figure, answer the following questions:
(i) What is the area of one ear of the puppy? (both ears are similar)
(ii) What is the area of the paper used to make nose of the puppy?
(iii) If the tongue of the puppy is in the shape of equilateral triangle, with side 2 cm each, then what is the area of the paper used to make tongue? What will be the length of the middle line of the tongue as shown in figure?
(iv) If the total area of paper used to make the puppy is $96 \mathrm{~cm}^{2}$, then find the area of paper used to make the face (except ears, nose and tongue) of the puppy.
18. A triangular field has vertices A, B and C. The length of the sides are 130 m , 140 m , and 150 m . The farmer wants to fence his field all around leaving a space 5 m wide with gate on one side. The cost of fencing it with barbed wire is ₹ 20 per metre. After fencing farmer cultivates carrot in the field.

Based on the above information, answer the following questions:-
(i) Find the semi perimeter of the triangular field.
(ii) Find the perimeter of the field.
(iii) Find the cost of fencing the field.
(iv) Find the Total area of the field.
19. Juhi a young girl found a spherical shaped coconut. She consumed the water of the coconut and used her creativity by decorating the outer spherical covering of the coconut and sold it. The radius of the coconut was 2.1 cm . (considering the thickness of coconut negligible and coconut fully filled with water).
Based on the above situation, answer the following questions:-

(i) What was the surface area of spherical coconut?
(ii) If Juhi could decorate only half coconut using paper then what would be the area of required paper?
(iii) If the price for decorating coconut is Rs 5 per sq cm then what would be price of decorating the whole coconut?
(iv) What was the volume of coconut water Juhi consumed?
20. Traffic cone are used outdoor during road work in various situations such as traffic redirection, advance warning of hazards or the prevention of traffic.
A traffic cone has the radius of 2.1 cm and height 20 cm . Answer the following questions based on the above data:-
(i) What is the slant height of the traffic cone?
(ii) What will be the total surface area of the traffic cone?
(iii) If the price of painting is ₹ 8 per sq. m , then find the price of painting the curved surface of 20 such traffic
 cones.
(iv) What will be the volume of each traffic cone?
21. Kaushal a IX class student loves chocolates. On his birthday his mother gifts him a chocolate baking tray. The tray has 6 hemispherical cavities each of diameter 8.4 cm . Kaushal prepares the chocolates on his birthday using this tray and share these hemispherical chocolates with his friends.

On the basis of above information answer the following questions :-
(i) Find the radius of the hemispherical chocolate.
(ii) Find the volume of each hemispherical chocolate.
(iii) Kaushal wants to cover each chocolate with paper. How much paper will be required for whole tray of chocolates?
(iv) If Neha eats two third of the chocolates (Assuming the tray is full of chocolates). How much volume of chocolates does she eat?
22. In a classroom of class IX, an activity on real numbers is done with the students. A student has to pick a card and has to answer the questions written on it. The cards picked up by first 4 students and their questions written on it are given below. Find out its correct option/ answer.
(i) Which type of number is $\sqrt{10}$?
(ii) $\frac{1}{3}$ is an a/an \qquad number.
(iii) For what value of ' p ' $\frac{251}{2^{3} \times p^{2}}$ is an non-terminating recurring decimal. Which type of number has decimal expansion as non-terminating recurring.
(iv) $(256)^{0.16} \times(256)^{0.09}=$ \qquad -
23. A building has 13 floors above and 4 floors below the ground (basement). Stairs run to the lowest ground of the basement to the top of the building. Ramesh is standing on the ground. If that point is considered " 0 " and after every 4 steps of stairs, either above or below, he counts " 1 ". Also, below the ground he counts negative numbers.
Represent his position by number in each of the following cases-

(i) What would he count if he has climbed 16 stairs above?
(ii) If has gone three steps below the ground then at what number he will be?
(iii) If he has climbed seven steps above the ground and then goes down 10 stairs what is the number of his position?
(iv) Solve $\frac{2}{4}-\left(\frac{-5}{4}\right)$ and name the numbers used to represent his location position.
24. A school wants to plant in a row as distance shown in the figure Height of each tree is considered equal and is taken as 1 unit. Distance $O A$ is also 1 unit. First Tree is planted at point B and second at C .
Consider point " O " as the zero of the line and $O B=O P, O C=O Q$ then

[Neglect width of the tree]
(i) Find the distance $O B$.
(ii) Find the distance $O C$.
(iii) Simplify $\frac{1}{O B}$, what type of number it is?
(iv) Making denominator of $\frac{O B}{O C}$ rational, what will we get?
25. A tree plantation campaign was organised in a government school. Under this campaign, the students of class-IX were planted total 2079 trees. The trees were arranged in rows and columns. The number of rows were and number of columns were $(x-1)$.

(i) If total 2079 trees planted then find the value of x ?
(ii) Find the numbers of rows and columns.
(iii) Find the polynomial for the above situation.
(iv) Find the factors the polynomial.
26. Mahesh wants to paint a wall of his room. He decides to paints the wall in two colours, pink and white, divided diagonally. The length and breath of the wall are $(x+4)$ and $(3 x+2)$ respectively. The diagonal of the wall is $x^{2}+3 x$.

(i) The area of the wall is \qquad polynomial.
(ii) What is the area of the walls?
(iii) Mahesh wished to draw flowers in the squared area of the wall. By how much length should be reduced?
(iv) If $x=2$, then find the area to be painted pink?
27. One day, whole going to the office, Suchitra has to go to her son's school to attend PTM. Then she worked in the office and left early as some guests are arriving at her house in the evening. She went to the bank after the office and then to the shop to purchase some groceries to welcome the guests. The route of Suchitra has been shown in the Cartesian plane in the figure below. The location of Suchitra's house in Cartesian plane is $(0,-4)$.

IX - Mathematics
(i) Write the coordinates of Suchitra's house?
(ii) Name the building having same ordinate.
(iii) Write the coordinates of shop and bank. Find (ordinate of shop) - (abscissa of bank).
(iv) Which buildings are in quadrant II? Write their coordinates.
28. To make the student aware of personal health and hygiene, a race was organized on rectangular playground $A B C D$ of a school. The lines were drawn with chalk powder at a distance of 1 m each and 100 flower pots were placed at a distance of 1 m from each other along $A D$. Meeta ran $\frac{1}{4}$ th of the distance $A D$ on the third line and posted a red flag. Mayank ran $\frac{1}{5}$ th of the distance $A D$ on the seventh line and posted a green flag.

(i) What are the coordinates of red flag?
(ii) What are the coordinates of green flag?
(iii) What is the mirror image of green flag along x-axis and along y-axis.
(iv) Find the difference of ordinates and abscissa of red flag and green flag.
29. The diagram shows a model of pyramid placed on a Cartesian plane in a mathematics lab in a school. Based on the diagram, answer the following questions.
(i) What are the coordinates of the axis of the pyramid?
(ii) What is the perpendicular distance between the edges of BC and $E D$?
(iii) If the pyramid is moved 2 units to the right, what will be the coordinates of vertex D ?
(iv) If the pyramid is moved 3 units below its actual position, what will be the coordinates of vertex B ?
(v) If the vertex B would lie on the origin, what will be the coordinates of vertex E ?

30. The municipal corporation decides to open a school in the town. The corporation chooses a plot $A B C D$ in the town area to build the school. But this plot belongs to Mr. Amar singh, who gets agreed to exchange it with the triangular plot $P Q R$ outside the town border. The coordinates of both the plots $A B C D \& P Q R$ are shown in the Cartesian plane as below:

(i) What are the coordinates of vertex C ?
(ii) What is the area of rectangular plot $A B C D$?
(iii) What is the area of triangular plot $P Q R$?
(iv) Find the ratio of $\operatorname{Ar}(A B C D)$ to $\operatorname{Ar}(P Q R)$.
31. A group of students decided to make project on statistics. They are collected the data of heights (in cm) of 51 girls of Class IX $-A, B$ and C of their school. After collecting the data, they arranged the data in the following frequency distribution table form:

Height (in cm)	No. of girls
$135-140$	4
$140-145$	7
$145-150$	18
$150-155$	11
$155-160$	6
$160-165$	5

Based the information, answer the following.

(i) Write the class interval with highest frequency?
(ii) How many students have height less than 155 cm ?
(iii) How many students are there of height 150 cm or above?
(iv) How many students are there whose height is more than 140 cm but less than 160 cm ?
32. The following bar graph represent the heights (in cm) of 50 students of class IX of a particular school.

189
IX - Mathematics
(i) What is the percentage of the total student whose height is more than 142 cm ?
(ii) How many students in the class have maximum height?
(iii) How many students have their height between 142 cm and 145 cm .
(iv) What is the range of the data?

ANSWER

1. (i) $x+2 y=100$
(ii) 25
(iii) 25
(iv) 20
2. (i) ₹ 16
(ii) 15 days
(iii) $3 x-y=5$
(iv) 16
3. (i) 36.5
(ii) 98.6
(iii) IV
(iv) 97.7 and 99.5
4. (i) 96°
(ii) 5 cm
(iii) $24^{\circ}, 28^{\circ}$
(iv) 96,192
5. (i) 70°
(ii) Interior angles
(iii) $110^{\circ}, 70^{\circ}$
(iv) $180^{\circ}, 290^{\circ}$
6. (i) 120°
(ii) 250°
(iii) 110°, Scalene Triangle
7. (i) $\triangle A D C$
(ii) $S A S$ Congruency Criteria
(iii) $B C=C D$
8. (i) Scalene triangle
(ii) yes, triangles congruent by SSS congruency criteria.
(iii) $B C=E F$
(iv) $\angle \mathrm{A}=\angle \mathrm{D}$
9. (i) (b) Square
(ii) (c) Rectangle
(iii) (c) $A B=C D \& K N=J O$
(iv) (a) $J K N O$
(v) 70.56
10. (i) (c) 5.5 cm and 5 cm roop
(ii) (b) 60°
(iii) (a) 120°
(iv) (b) 3 cm
(v) (c) 4 cm
11. (i) (b) $\sqrt{13} \mathrm{~cm}$
(ii) (b) 7 cm
(iii) (a) 8 cm
(iv) (c) $4 \sqrt{2} \mathrm{~cm}$
(v) (b) 4 cm
12. (i) 80°
(ii) 24 m
(iii) 50°
13. (i) 20 m
(ii) 30 m
(iii) $\angle B G C=120^{\circ}$ and $\angle A B Q=30^{\circ}$
(iv) $20 \sqrt{3} \mathrm{~m}$
14. (i) $2: 1$
(ii) 4 m

(iii)	1.4 m	21. (i)	4.2 cm
(iv)	9.6 m	(ii)	$155.23 \mathrm{~cm}^{2}$
15. (i)	$a+25^{\circ}$	(iii)	$997.92 \mathrm{~cm}^{2}$
(ii)	55°	(iv)	$620.92 \mathrm{~cm}^{2}$
(iii)	280°	22. (i)	It is an irrational number
(iv)	10 cm	(ii)	Rational number
(v)	8 cm	(iii)	$\mathrm{P} \neq 2,5$ Rational
16. (i)	$16000 \sqrt{2} \mathrm{~cm}^{2}$	(iv)	4
(ii)	$19200 \mathrm{~m}^{2}$	23. (i)	4
(iii)	$19200 \mathrm{~m}^{2}, 1: 1$	(ii)	$\underline{-3}$
(iv)	61000 sq.m, 6.1 Hectares		4
17. (i)	$24 \mathrm{~cm}^{2}$	(iii)	$\frac{-3}{4}$
(ii)	$\sqrt{15} \mathrm{~cm}^{2}$		3
(iii)	$\sqrt{3} \mathrm{~cm}^{2}, \sqrt{3} \mathrm{~cm}$	(iv)	$\frac{-1}{4}$, Integers
(iv)	$(48-\sqrt{15}-\sqrt{3}) \mathrm{cm}^{2}$	24. (i)	$\sqrt{2}$ units
18. (i)	210 m	(ii)	$\sqrt{3}$ units
(ii)	420 m	(iii)	$\sqrt{2}$, Irrational
(iii)	₹ 8300		2
(iv)	$5600 \mathrm{~m}^{2}$		$\sqrt{6}$
19. (i)	55.44 sq.cm	(iv)	3
(ii)	0.002772 sq.m	25. (i)	$x=32$
(iii)	₹ 277.20	(ii)	65, 31
(iv)	38.808 ml	(iii)	$x^{2}-x-2080$
20. (i)	20.109 cm	(iv)	$(2 x-65)(x-32)$
(ii)	146.5 cm	26. (i)	quadratic
(iii)	₹ 2.11	(ii)	$(x+4)(3 x+2)$
(iv)	$92.4 \mathrm{~cm}^{3}$	(iii)	$2(x-1)$
		(iv)	24

21. (i) 4.2 cm
(ii) $155.23 \mathrm{~cm}^{2}$
(iii) $997.92 \mathrm{~cm}^{2}$
(iv) $620.92 \mathrm{~cm}^{2}$
22. (i) It is an irrational number
(ii) Rational number
(iii) $\mathrm{P} \neq 2,5$ Rational
(iv) 4
23. (i) 4
(ii) $\frac{-3}{4}$
(iii) $\frac{-3}{4}$
(iv) $\frac{3}{4}$, Integers
24. (i) $\sqrt{2}$ units
(ii) $\sqrt{3}$ units
(iii) $\frac{\sqrt{2}}{2}$, Irrational
(iv) $\frac{\sqrt{6}}{3}$
25. (i) $x=32$
(ii) 65,31
(iii) $x^{2}-x-2080$
(iv) $(2 x-65)(x-32)$
26. (i) quadratic
(ii) $(x+4)(3 x+2)$
(iii) $2(x-1)$
(iv) 24
27. (i) $(0,-4)$
(ii) shop and school
(iii) $\operatorname{Shop}(10,4) \operatorname{Bank}(4,10)$
(ordinate of shop) $-($ abscissa of bank $)=4-4=0$
(iv) School and office, school $(-8,4)$ office $(-12,8)$
28. (i) $(3,25)$
(ii) $(7,20)$
(iii) along x -axis $(7,-20)$ along y -axis $(-7,20)$
(iv) ordinate difference $=25-20=5$
abscissa difference $=3-7=-4$
29. (i) $(5,8)$
(ii) 2 units
(iii) $(10,5)$
(iv) $(4,2)$
(v) $(2,2)$
30. (i) $(8,8)$
(ii) 15 sq. units
(iii) 13.5 sq. units
(iv) $10: 9$
31. (i) $145-150$
(ii) 40
(iii) 22
(iv) 42
32. (i) 90%
(ii) 20
(iii) 30
(iv) 3

PRACTICE QUESTION PAPER - I

MATHEMATICS

Class-IX

Time allowed : 3hrs

Max. Marks : 80

General Instructions:

1. This question paper has 5 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
2. Section A has 20 multiple choice questions (MCQs) carrying 1 mark each.
3. Section B has 5 short answer-I (SA-I) type questions carrying 2 marks each.
4. Section C has 6 short answer-II (SA-II) type questions carrying 3 marks each.
5. Section D has 4 long answer (LA) type questions carrying 5 marks each.
6. Section E has 3 case based integrated units of assessment (4 marks each) with subparts of the values of 1,1 and 2 marks each respectively.
7. All questions are compulsory. However, an internal choice in 2 questions of 2 marks, 2 questions of 3 marks and 2 questions of 5 marks, 2 questions of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of section E.
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

Section-A

Section A consists of $\mathbf{2 0}$ questions of 1 mark each.

1. $\sqrt[4]{\sqrt[3]{3^{2}}}$ equals:
(a) $3^{-1 / 6}$
(b) $3^{1 / 6}$
(c) 3^{-6}
(d) 3^{6}
2. Sides of a triangle are in the ratio of $3: 5: 7$ and its perimeter is 300 cm . Its area will be:
(a) $1000 \sqrt{3}$ sq. cm
(b) $1500 \sqrt{3}$ sq. cm
(c) $1700 \sqrt{3}$ sq. cm
(d) $1900 \sqrt{3}$ sq. cm
3. It is given that $\triangle A B C \cong \triangle F D E$ and $A B=5 \mathrm{~cm}, \angle B=40^{\circ}$ and $\angle A=80^{\circ}$ then which one is true?
(a) $D F=5 \mathrm{~cm}, \angle F=60^{\circ}$
(b) $D F=5 \mathrm{~cm}, \angle E=60^{\circ}$
(c) $D E=5 \mathrm{~cm}, \angle E=60^{\circ}$
(d) $D E=5 \mathrm{~cm}, \angle D=60^{\circ}$
4. If $x^{1 / 3}+y^{1 / 3}+z^{1 / 3}=0$ then which equation is correct?
(a) $x^{3}+y^{3}+z^{3}=0$
(b) $x+y+z=3 x^{1 / 3} y^{1 / 3} z^{1 / 3}$
(c) $x+y+z=3 x y z$
(d) $x^{3}+y^{3}+z^{3}=3 x y z$
5. When $P(x)=x^{3}-3 x^{2}+5$ then what is the value of $P(-1)$?
(a) 3
(b) -1
(c) 9
(d) 1
6. To rationalize the denominator of $\frac{1}{\sqrt{a}+b}$, we multiply this by
(a) $\frac{1}{\sqrt{a}+b}$
(b) $\frac{1}{\sqrt{a}-b}$
(c) $\frac{\sqrt{a}+b}{\sqrt{a}-b}$
(d) $\frac{\sqrt{a}-b}{\sqrt{a} b}$
7. Find the value of k for which $x=1, y=2$ is the solution of equation $2 x+3 y=k$
(a) 5
(b) 6
(c) 7
(d) 8
8. If the point P lies in between M and N and C is mid point of MP , then:
(a) $M C+P N=M N$
(b) $M P+C P=M N$
(c) $M C+C N=M N$
(d) $C P+C N=M N$
9. In the given figure, ABCD is a parallelogram. Find the value of x.

(a) 25°
(b) 80°
(c) 75°
(d) 45°
10. Distance of chord AB from the centre is 12 cm and length of the chord is 10 cm . Then the diameter of the circle is
(a) 26 cm
(b) 13 cm
(c) $\sqrt{244} \mathrm{~cm}$
(d) 20 cm
11. What is the total surface area of a cone with radius is $r / 2$ and slant height $2 l$?
(a) $2 \pi(l+r)$
(b) $\pi r\left(l+\frac{r}{4}\right)$
(c) $\pi r(l+r)$
(d) $2 \pi r$
12. How many dimensions a point has?
(a) 1
(b) 0
(c) 3
(d) 2
13. The class mark of class $150-160$ is
(a) 150
(b) 160
(c) 155
(d) 10
14. The class mark of a class is 10 and its class width is 6 . The lower limit of the class is
(a) 5
(b) 7
(c) 8
(d) 8
15. Any point on the x-axis is of the form
(a) (x, y)
(b) $(0, y)$
(c) $(x, 0)$
(d) (x, x)
16. The centre of a circle lies in \qquad of the circle.
(a) Exterior
(b) Interior
(c) Boundary
(d) None of these
17. Consecutive angles of a parallelogram are
(a) equal
(b) supplementary
(c) complementary
(d) complete angle
18. The curved surface area of a sphere is $616 \mathrm{~cm}^{2}$. Its radius is
(a) 7 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm

Direction: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R).

Choose the correct option:

19. Statement A (Assertion): -7 is a constant polynomial. Statement R (Reason): Degree of a constant polynomial is zero.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)

IX - Mathematics
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true
20. Statement A (Assertion) : Cuboid is a three dimensional shape.

Statement B (Reason) : A solid has three dimensions
(a) Both assertion (A) and reason (R) are true and reason (R) is correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true

Section-B

Section B consists of 5 questions of 2 marks each.

21. Express $0 . \overline{47}$ in the form of $\frac{p}{q}$

OR

Evaluate $27^{2 / 3} \times 27^{1 / 3} \times 27^{-4 / 3}$
22. Find the area of triangle two sides of which are 8 cm and 11 cm and the perimeter is 32 cm .
23. Find the points where the graph of equation $2 x+3 y=6$ cuts the x-axis and the y-axis.
24. Find the angle which is four times its complement.

OR
If the difference between two supplementary angles is 40° then find the smaller angle.
25. Write the equation of two lines passing through $(3,10)$.

Section-C

Section C consists of 6 questions of 3 marks each.
26. Solve $\left[5\left(8^{1 / 3}+27^{1 / 3}\right)^{3}\right]^{1 / 4}$
27. The sides of a triangular field are $40 \mathrm{~cm}, 9 \mathrm{~cm}$ and 41 cm . Find the number of flower beds that can be prepared in the field, if each flower bed, on an average needs $18 \mathrm{~cm}^{2}$ space.
28. If $x^{2}+y^{2}=49$ and $x-y=3$ then find the value of $x^{3}-y^{3}$.
29. Find the value of a and b
$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}=a+b \sqrt{6}$
30. Factorize $8 x^{3}+\sqrt{27} y^{3}$

OR
If $P(x)=x^{2}-3 x+2$ then find the value of $P(1)+P(-1)+P(0)$
31. In the given figure $l \| m$ and n is the transversal, find x.

Section-D

Section D consists of 4 questions of 5 marks each.

32. If $(x+2)$ is a factor of polynomial $a x^{3}+b x^{2}+x-6$ and get remainder of 4 in dividing polynomial by $(x-2)$ then find values of a and b.
33. Show that the quadrilateral formed by joining the mid-points of the sides of a square is also a square.

OR

In the given figure $A B C D$ is a trapezium in which side $A B$ is parallel to side $D C$ and E is the mid-point of the side $A D$. If F is a point in the side $B C$ such that line segment $E F$ is parallel to $D C$ then prove that $E F=\frac{1}{2}(A B+D C)$

34. AC and BD are two chords of a circle that bisect each other.

Prove that:
(i) AC and BD are diameter
(ii) ABCD is a rectangle.
35. If the diameter of a sphere is reduced by 25% by how much percentage the surface area is reduced?

OR
The inner and outer diameter of a hallow hemispherical container are 24 cm and 25 cm respectively. If the cost of painting $1 \mathrm{~cm}^{2}$ of surface is $₹ 0.05$, then what will be the cost of painting total surface of the container. (use $\pi=22 / 7$)

Section-E

Section E consists of 3 questions of 4 marks each. Case study based questions are compulsory.
36.

There is a square park ABCD in the middle of a colony in Delhi. Four children Deepak, Ashok, Arjun and Deepa went to play with their balls. The colour of the ball of Ashok, Deepak, Arjun and Deepa are red, blue, yellow and green respectively.

All four children roll their ball from centre point O in the direction of XOY, $\mathrm{X}^{\prime} \mathrm{OY}, \mathrm{X}^{\prime} \mathrm{OY}^{\prime}$ and XOY^{\prime}. Their balls stopped as shown in the above image.
Answer the following questions (Attempt any one out of iii and iv)
(i) What the line XOX^{\prime} is called? (1 mark)
(ii) What the centre point is called?
(1 mark)
(iii) What are the coordinates of the ball of Ashok and Deepa?
(iv) What is the distance of the Arjun's ball from X axis and Y axis?(2 marks)
37. The COVID-19 pandemic, also known as the corona virus pandemic was caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, China.
During survey, the ages of 80 patients infected by COVID and admitted in the one of the City hospital were recorded and the collected data is represented in the frequency distribution table.

Age (in yrs)	No. of patients
$5-15$	6
$15-25$	11
$25-35$	21
$35-45$	23
$45-55$	14
$55-65$	5

Based on the information answer the following questions: (Attempt one out of iii and iv)
(i) Which class interval is of highest frequency?
(ii) Which age group was affected the least?
(iii)Draw histogram for the above data.
(iv) Draw frequency polygon for the above data.
38. Teena has a picture of triangles as given in the figure in which side $A B$ is equal to side AD and $\angle \mathrm{BAC}$ is equal to $\angle \mathrm{DAC}$.

IX - Mathematics

Based on the above information answer the following questions: (Attempt one out of iii and iv)

(i) Name the congruent triangles in the given figure.	(1 mark)
(ii) By which property these triangles are congruent?	(1 mark)
(iii) Which angle of $\triangle \mathrm{ADC}$ is equal to $\angle \mathrm{ABC}$ of $\triangle \mathrm{ABC}$ and why?	$(2$ marks)
(iv) Is $\mathrm{CD}=\mathrm{BC}$? If yes why?	$(2$ marks)

ANSWER

Section-A

1. (b) $3^{1 / 6}$
2. (b) $1500 \sqrt{3}$ sq. cm
3. (b) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
4. (b) $x+y+z=3 x^{1 / 3} y^{1 / 3} z^{1 / 3}$
5. (d) 1
6. (d) $\frac{\sqrt{a}-b}{\sqrt{a}-b}$
7. (d) 8
8. (c) $\mathrm{MC}+\mathrm{CN}=\mathrm{MN}$
9. (d) 45°
10. (a) 26 cm
11. (b) $\pi r\left(l+\frac{r}{4}\right)$
12. (b) 0
13. (c) 155
14. (b) 7
15. (c) $(x, 0)$
16. (b) Interior
17. (b) Supplementary
18. (a) 7 cm
19. (a)
20. (a)

Section-B

21. Let

$$
\begin{align*}
x & =0 . \overline{47} \tag{1}\\
100 x & =47 . \overline{47} \tag{2}\\
x & =\frac{47}{99}
\end{align*}
$$

22.

$$
\begin{aligned}
27^{\frac{2}{3}+\frac{1}{3}-\frac{4}{3}} & =27^{-\frac{1}{3}}=3^{-1}=\frac{1}{3} \\
a & =8 \mathrm{~cm} \\
b & =11 \mathrm{~cm} \\
\text { Perimeter } & =32 \mathrm{~cm} \\
c & =13 \\
s & =16 \mathrm{~cm} \\
\text { Area of } \Delta & =\sqrt{16(16-8)(16-11)(16-13)} \\
& =\sqrt{16 \times 8 \times 5 \times 3} \\
& =8 \sqrt{30} \mathrm{~cm}^{2}
\end{aligned}
$$

23. Cut at x -axis $\Rightarrow y=0$

$$
\begin{aligned}
\therefore \quad 2 x+3 \times 0 & =6 \\
x & =3
\end{aligned}
$$

Cut at x -axis $\Rightarrow x=0$

$$
\begin{array}{r}
2 \times 0+3 y=6 \\
y=2
\end{array}
$$

Therefore required points are $(3,0)$ and $(0,2)$
24. Let angle $=x$

Complementary angle $=90-x$

$$
\begin{aligned}
& x=4(90-x) \\
& x=72^{\circ}
\end{aligned}
$$

Angles are $72^{\circ}, 18^{\circ}$.

OR

Let angle $=x$
Supplementary angle $=180-x$

$$
\begin{aligned}
x-(180-x) & =40^{\circ} \\
x & =110^{\circ}
\end{aligned}
$$

\therefore Smaller angle $=180^{\circ}-110^{\circ}=70^{\circ}$
25.

$$
\begin{array}{r}
x+y-13=0 \\
y-x-7=0
\end{array}
$$

26. $\left[5\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{4}}=\left[5(2+3)^{3}\right]^{\frac{1}{4}}=\left(5 \times 5^{3}\right)^{\frac{1}{4}}=5^{4 \times \frac{1}{4}}=5^{1}=5$

Section-C

27. $a=40 \mathrm{~cm}, b=9 \mathrm{~cm}, c=41 \mathrm{~cm}$

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{S} & =\frac{40+9+41}{2} \\
\mathrm{~S} & =45 \\
\text { Area of } \Delta & =\sqrt{45(45-40)(45-9)(45-41)} \\
& =180 \mathrm{~cm}^{2} \\
\text { Number of beds }= & \frac{180}{18}=10
\end{aligned} \$=\text {, }
\end{aligned}
$$

28. Given :

$$
\begin{aligned}
x^{2}+y^{2} & =49 \\
x-y & =3 \\
(x-y)^{2} & =3^{2} \\
x^{2}+y^{2}-2 x y & =9 \\
49-2 x y & =9 \\
x y & =20 \\
x^{3}-y^{3} & =(x-y)\left(x^{2}+y^{2}+x y\right) \\
& =3(49+20) \\
& =207
\end{aligned}
$$

29. $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}} \times \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{(\sqrt{2}+\sqrt{3})^{2}}{(\sqrt{2})^{2}-(\sqrt{3})^{2}}$

$$
=-5-2 \sqrt{6}=a+b \sqrt{6}
$$

$$
a=-5, b=-2
$$

30.

$$
\begin{aligned}
8 x^{3}+\sqrt{27} y^{3} & =(2 x)^{3}+(\sqrt{3} y)^{3} \\
a^{3}+b^{3} & =(a+b)\left(a^{2}+b^{2}-a b\right) \\
& =(2 x+\sqrt{3} y)\left(4 x^{2}+3 y^{2}-2 \sqrt{3} x y\right)
\end{aligned}
$$

OR

$$
\begin{aligned}
P(x) & =x^{2}-3 x+2 \\
P(1) & =1-3+2=3-3=0 \\
P(-1) & =(-1)^{2}-3(-1)+2=6 \\
P(0) & =0-3 \times 0+2=2 \\
P(1)+P(-1)+P(0) & =6+2=8
\end{aligned}
$$

31.

$$
\begin{aligned}
& 3 y=2 y+25^{\circ} \Rightarrow y=25^{\circ} \quad \text { (Alternate interior angles) } \\
& x+15^{\circ}=2 y+25^{\circ} \\
& x+15^{\circ}=2 \times 25^{\circ}+25^{\circ} \quad \text { (Vertically opposite angles) } \\
& x+15^{\circ}=75 \\
& x=60^{\circ} \\
& \quad \underline{\text { Section-D }}
\end{aligned}
$$

32. $-2 a+b=2,2 a+b=2$, By Solving $a=0, b=2$
33. 43.75%

OR
$3 \pi\left(\frac{25}{2}\right)^{2}+\pi \times 12^{2}=\frac{2451 \pi}{4}$
$=\frac{2451}{4} \times \frac{22}{7} \times \frac{5}{100}$
= ₹ 96.28

Section-E

36. (i) x-axis
(ii) Origin
(iii) $(3,4)$ and $(2-3)$
(iv) 3 units and 3 units
37. (i) 35-45 has highest frequency
(ii) 55-65 has lowest frequency

So least affected.
38. (i) $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$
(ii) SAS
(iii) $\angle \mathrm{ADC}$ By CPCT
(iv) $\mathrm{CD}=\mathrm{BC}$ by CPCT

PRACTICE QUESTION PAPER-II

MATHEMATICS

Class-IX

Time allowed : 3hrs

General Instructions:

1. This question paper has 5 sections A, B, C, D and E.
2. Section \mathbf{A} has 20 MCQs carrying 1 mark each.
3. Section \mathbf{B} has 5 questions carrying 2 marks each.
4. Section \mathbf{C} has 6 questions carrying 3 marks each.
5. Section \mathbf{D} has 4 questions carrying 5 marks each.
6. Section \mathbf{E} has 3 case based integrated units of assessment (4 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
7. All questions are compulsory. However, an internal choice in 2 questions of 5 marks, 2 questions of 3 marks and 2 questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of section E.
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

Section-A

Section A consists of 20 questions of 1 mark each.

1. Rational number $\frac{2}{25}$ is equal to :
(a) 0.08
(b) 0.8
(c) 0.02
(d) 0.2
2. The value of $125^{-1 / 3}$ is :
(a) $\frac{1}{125}$
(b) $\frac{1}{15}$
(c) $\frac{1}{5}$
(d) $\frac{1}{25}$
3. The zeros of the polynomial $P(x)=(x+1)(x+2)$ are :
(a) $-1,2$
(b) $-1,-2$
(c) $1,-2$
(d) 1,2
4. If $(x-1)$ is a factor of $x^{2}+a x+5$, then the value of a is :
(a) 6
(b) 1
(c) -6
(d) 3
5. The linear equation $7 x-3 y=10$ has :
(a) a unique solution
(b) two solution
(c) No solution
(d) Infinite many solutions
6. If $(1,2)$ is a solution of the linear equation $4 x+y=k$ then the value of k is :
(a) 6
(b) -6
(c) 5
(d) -5
7. If a point C lies between two points A and B such that $A C=B C$, then

(a) $\mathrm{AC}=\mathrm{AB}$
(b) $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$
(c) $\mathrm{AB}=\frac{1}{2} \mathrm{AC}$
(d) $\mathrm{AC}=2 \mathrm{AB}$
8. The angle which is four times its complement is :
(a) 45°
(b) 60°
(c) 72°
(d) 18°
9. In figure, $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{BE}=\mathrm{CD}$. If $\triangle \mathrm{ACD} \cong \triangle \mathrm{ABE}$ then $\mathrm{AD}=$

(a) AC
(b) AE
(c) AB
(d) None of these
10. The angles of a quadrilateral are in the ratio $1: 2: 2: 4$ then respective angles of the quadrilateral are :
(a) $36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$
(b) $120^{\circ}, 100^{\circ}, 80^{\circ}, 60^{\circ}$
(c) $60^{\circ}, 80^{\circ}, 100^{\circ}, 120^{\circ}$
(d) $40^{\circ}, 80^{\circ}, 80^{\circ}, 160^{\circ}$
11. The quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if
(a) PQRS is rectangle
(b) PQRS is a parallelogram
(c) Diagonals of PQRS are perpendicular
(d) Diagonals of PQRS are equal
12. A chord 6 cm long is drawn in a circle with a diameter equal to 10 cm , then its perpendicular distance from centre is :
(a) 5 cm
(b) 4 cm
(c) 6 cm
(d) 7 cm
13. In figure, $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, then $\angle \mathrm{BDC}$ is :
(a) 60°
(b) 80°
(c) 90°
(d) 100°
14. Area of an equilateral triangle of side l units is:
(a) $\frac{\sqrt{3}}{4} l^{2}$
(b) $\frac{\sqrt{3}}{2} l^{2}$
(c) $\frac{\sqrt{3}}{2} l$
(d) $\frac{\sqrt{3}}{4} l$
15. The volume of the sphere with diameter $3 r$ units is:
(a) $\frac{4}{3} \pi r^{3}$
(b) $\frac{9}{2} \pi r^{3}$
(c) $36 \pi r^{3}$
(d) $\frac{27}{2} \pi r^{3}$
16. The volume of the right circular cone with radius 6 cm and height 3.5 cm is :
(a) $127 \mathrm{~cm}^{3}$
(b) $132 \mathrm{~cm}^{3}$
(c) $137 \mathrm{~cm}^{3}$
(d) $147 \mathrm{~cm}^{3}$
17. The class mark and class size of a class interval are 12.5 and 5 respectively, then the class interval is :
(a) 10-15
(b) 12-13
(c) 11-14
(d) 8-13
18. In the class intervals $15-25,25-35$, the number 25 is included in
(a) 15-25
(b) 25-35
(c) both the interval
(d) None of the intervals

Direction: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R).
Choose the correct option:
19. Statement A (Assertion): The degree of the polynomial $7 y^{5}-2 y^{3}+7 y+1$ is 5 Statement R (Reason): The highest power of the variable in a polynomial is called the degree of the polynomial
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true
20. Statement A (Assertion): In $\triangle \mathrm{ABC}, \angle \mathrm{B}=70^{\circ}$ and in $\triangle \mathrm{PQR}, \angle \mathrm{P}=70^{\circ}$ so $\angle \mathrm{B}=\angle \mathrm{P}$

Statement R (Reason): All right angles are equal
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true

Section-B

Section B consists of 5 questions of 2 marks each.

21. Simplify : $\left(16^{-1 / 5}\right)^{5 / 2}$

OR
Simplify : $(\sqrt{5}-2)(\sqrt{3}-\sqrt{5})$
22. If the point $(2 k-3, k+2)$ lies on the graph of equation $2 x+3 y+15=0$, find the value of k.
23. The total number of legs in a herd of goats and hens is 40 . Represent this situation in the form of a linear equation in two variables.
24. Find the area of an isosceles triangle each of whose equal side is 13 cm and whose base is 24 cm .
25. In figure $\mathrm{AO} \perp \mathrm{OB}$, find $\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$.

OR
In figure, if ACB is a straight line and $x: y=2: 1$. Find the value of x and y.

Section-C
Section Consists of $\mathbf{6}$ questions of 3 marks each.
26. Evaluate: $\sqrt[4]{16}-6 \sqrt[3]{343}+18 \sqrt[5]{243}-\sqrt{196}$
27. Simplify: $(\sqrt{7}-\sqrt{2})^{2}-(\sqrt{7}+\sqrt{2})^{2}$
28. If $a+b+c=4$ and $a^{2}+b^{2}+c^{2}=14$, find $a b+b c+c a$
29. Factorize : $(x-y)^{2}-7\left(x^{2}-y^{2}\right)+12(x+y)^{2}$

OR
Simplify: $\frac{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}$
30. In figure, if $\mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF}$ and $y: z=3: 7$ find x, y and z.

OR
In figure, POQ is a line. Ray OR is perpendicular to line $\mathrm{PQ} \cdot \mathrm{OS}$ is another ray lying between rays $O P$ and $O R$.

Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$
31. A triangular park in a city has dimensions $30 \mathrm{~m}, 26 \mathrm{~m}$ and 28 m . A gardener has to plant grass inside it at $₹ 1.50$ per m^{2}. Find the amount to be paid to the gardener.

Section-D

Section D consists of 4 questions of 5 marks each.
32. The polynomials $a x^{3}-3 x^{2}+4$ and $2 x^{3}-5 x+a$, when divided by $(x-2)$, leave the remainders p and q respectively. If $p-2 q=4$, find the value of a.
33. Show that the bisectors of angles of a parallelogram form a rectangle.

OR
$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C$, $C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rectangle.
34. Prove that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle. Using the above theorem, find the values of x in the given figure.

OR
Prove that the quadrilateral formed by the internal angle bisectors of any quadrilateral is cyclic.
35. A bus stop is barricaded from the remaining part of the road by using 50 hollow cones made of recycled card board. Each one has a base diameter of 40 cm and height 1 m . If the outer side of each of the cones is to be painted and the cost of painting is $₹ 12$ per m^{2}, what will be the cost of painting all these cones?
[use $\pi=3.14$ and take $\sqrt{1.04}=1.02$]

Section-E

Section E consists of $\mathbf{3}$ case study based questions of 4 marks each.

36. Side and Front face of the house are plotted on the graph sheet.

i) Find the coordinates of the points A and B .
ii) Mention the points whose coordinates are $(5,7)$ and $(2,11)$.
iii) Find the area of the pentagon ABCDE .

OR
Find the difference between (Abscissa of G) and (Ordinate of J)
37. During a rangoli competition Ananya made a geometrical rangoli as shown below:

On measuring the dimensions it was found that AB and AC are equal and BE and CE are also equal.

213

i) Which side is common in triangles AEB and AEC?
ii) Are triangles BED and DEC congruent?
iii) Show that $\angle \mathrm{ABE}=\angle \mathrm{ACE}$.

OR
Show that $\angle \mathrm{ADC}=90^{\circ}$.
38. The award list of a mid term examination of Mathematics of class IX A is shown below:

Roll No.	Marks (out of 80)
1	32
2	35
3	61
4	68
5	72
6	73
7	54
8	17
9	28
10	16
11	32
12	35
13	32
14	38
15	34

Roll No.	Marks (out of 80)
16	44
17	65
18	72
19	78
20	15
21	30
22	32
23	35
24	54
25	62
26	66
27	5
28	19
29	76
30	9

i) What are the minimum and the maximum marks obtained?
ii) Find the range of data.
iii) Taking class interval $0-10,10-20$ and so on, construct a frequency distribution table.

OR
How many students scored marks in class interval 30-35.

ANSWERS

Section-A

1. (a) 0.08
2. (c) $\frac{1}{5}$
3. (b) $-1,-2$
4. (c) -6
5. (d) Infinite many solution
6. (a) 6
7. (b) $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$
8. (c) 72°
9. (b) AE
10. (d) $40^{\circ}, 80^{\circ}, 80^{\circ}, 160^{\circ}$
11. (c) Diagonals of $P Q R S$ are perpendicular
12. (b) 4 cm
13. (b) 80°
14. (a) $\frac{\sqrt{3}}{4} l^{2}$
15. (b) $\frac{9}{2} \pi r^{3}$
16. (b) $132 \mathrm{~cm}^{3}$
17. (a) $10-15$
18. (b) 25-35
19. (a)
20. (b)

Section-B

21. $\frac{1}{4}$ OR $\sqrt{15}-5-2 \sqrt{3}+2 \sqrt{5}$
22. $k=\frac{-15}{7}$
23. $2 x+y=20$
24. $60 \mathrm{~cm}^{2}$
25. $\angle \mathrm{AOC}=65^{\circ} ; \angle \mathrm{BOC}=25^{\circ}$

OR $x=120^{\circ} ; y=60^{\circ}$

Section-C

26. 0
27. $-4 \sqrt{14}$
28. 1
29. $(x+2 y)(3 x+5 y) \quad$ OR $(a+b)(b+c)(c+a)$
30. $x=126^{\circ} \quad y=54^{\circ} \quad z=126^{\circ}$
31. ₹ 504

Section-D

32. 4
33. $x=100^{\circ}$
34. ₹ 384.34 (approx)

Section-E

36. (i) $\mathrm{A}(3,1) \mathrm{B}(7,1)$
(ii) D, L
(iii) 18 sq. units $\mathrm{OR}-4$
37. (i) AE
(ii) Yes
38. (i) 5,78
(ii) 73
(iii)

C.I	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
f	2	4	2	9	1	2	5	5

OR

PRACTICE QUESTION PAPER-III MATHEMATICS

Class-IX

Time allowed : 3hrs

General Instructions:

1. This question paper has 5 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
2. Section \mathbf{A} has 20 multiple choice questions (MCQs) carrying 1 mark each.
3. Section B has 5 short answer-I (SA-I) type questions carrying 2 marks each.
4. Section \mathbf{C} has 6 short answer-II (SA-II) type questions carrying 3 marks each.
5. Section \mathbf{D} has 4 long answer (LA) type questions carrying 5 marks each.
6. Section \mathbf{E} has 3 case based integrated units of assessment (4 marks each) with subparts of the values of 1,1 and 2 marks each respectively.
7. All questions are compulsory. However, an internal choice in 2 questions of 2 marks, 2 questions of 3 marks and 2 questions of 5 marks, has been provided. An internal choice has been provided in the 2 marks questions of section E.
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

Section-A

Section A consists of 20 questions of 1 mark each.

1. A rational number $\frac{5}{7}$ is equivalent to :
(a) $\frac{15}{17}$
(b) $\frac{25}{27}$
(c) $\frac{10}{14}$
(d) $\frac{10}{27}$
2. The zero of the polynomial $p(x)=2 x+5$ is :
(a) 2
(b) $\frac{2}{5}$
(c) 5
(d) $\frac{-5}{2}$
3. The polynomial of type $a x^{2}+b x+c$ when $a=0$
(a) Linear
(b) Quadratic
(c) Cubic
(d) Bi-quadratic
4. Through which of the following point the graph of $y=-x$ passes?
(a) $(1,1)$
(b) $(0,1)$
(c) $(-1,1)$
(d) $(0,0)$
5. Graph of which equation is parallel to x-axis?
(a) $y=x+1$
(b) $y=2$
(c) $x=3$
(d) $x=2 y$
6. What is the measure of an angle whose measure is 32 less than its supplement?
(a) 148°
(b) 60°
(c) 74°
(d) 55°
7. In the given figure AD is the median then $\angle \mathrm{BAD}$ is
(a) 70°
(b) 55°
(c) 110°
(d) 35°

8. The radius of hemisphere is " r " then its total surface area is -
(a) $\frac{2}{3} \pi r^{3}$
(b) $3 \pi r^{2}$
(c) $2 \pi r^{2}$
(d) $\frac{4}{3} \pi r^{2}$
9. The sides of a triangle are in the ratio $3: 4: 5$. If its perimeter is 36 cm . Then what is its area?
(a) $72 \mathrm{~cm}^{2}$
(b) $67 \mathrm{~cm}^{2}$
(c) $32 \mathrm{~cm}^{2}$
(d) $54 \mathrm{~cm}^{2}$
10. The mean of 5 numbers is 30 . If one number is excluded their mean becomes 28 . What is excluded number?
(a) 38
(b) 35
(c) 32
(d) 36
11. In the given figure if O is the centre of a circle, then measure of $\angle \mathrm{ACB}$ is :

(a) 80°
(b) 40°
(c) 160°
(d) 35°
12. $\sqrt[4]{\sqrt[3]{2^{2}}}$
(a) $2^{-1 / 6}$
(b) 2^{-6}
(c) $2^{1 / 6}$
(d) 2^{6}
13. The angle of the semicircle is :
(a) 120°
(b) 60°
(c) 180°
(d) 90°
14. The class mark of the class $90-120$ is :
(a) 90
(b) 105
(c) 115
(d) 120
15. Which of the following is the formula for the volume of the sphere?
(a) $\frac{1}{3} \pi r^{3}$
(b) $\frac{2}{3} \pi r^{3}$
(c) πr^{3}
(d) $\frac{4}{3} \pi r^{3}$
16. The number of line segments formed by three collinear points is.
(a) Only one
(b) two
(c) three
(d) none of the these
17. If two consecutive sides of a rhombus are represented by $3 x-6$ and $x+14$ then the perimeter of the rhombus is
(a) 10
(b) 24
(c) 70
(d) 96
18. In the given figure ABCD is a rectangle $\mathrm{m} \angle \mathrm{ADE}=30^{\circ}$ and $\mathrm{m} \angle \mathrm{CFE}=150^{\circ}$. What is $\mathrm{m} \angle \mathrm{DEF}$

(a) 90°
(b) 75°
(c) 110°
(d) 85°
19. Direction : In the question no. 19 and 20 a statement of assertion (A) is followed by a statement o reason (A) choose the correct option.
Statement A (Assertion): There can be infinite number of lines that can be drawn through a single point.
Statement R (Reason): From this point we can draw only two lines.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true
20. Statement A (Assertion): Degree of a non-zero constant polynomial is zero.

Statement R (Reason): Polynomials having two terms are called binomials.
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true

Section-B

Section B consists of 5 questions of 2 marks each.

21. Find the value of x if $(\sqrt{3})^{x}=3^{7}$

OR
Add: $\sqrt{125}+2 \sqrt{27}$ and $-5 \sqrt{5}-\sqrt{3}$
22. Find the value of P if $x=2, y=3$ is a solution of equation $5 x+3 \mathrm{P} y=4 a$
23. Write the coordinates of the point where the graph of the equation $5 x+2 y=10$ intersects both the axes.
24. In the given figure AB and CD are two straight lines intersecting at O and OP is a ray. What is the measure of $\angle \mathrm{AOD}$? Also find the value of x.

OR
Find the angle which is four times more than its complement.
25. Find the area of an equilateral triangle whose sides are 4 cm each.

Section-C

Section C consists of 6 questions of 3 marks each.

26. Evaluate: $\frac{2^{38}+2^{37}+2^{36}}{2^{39}+2^{38}+2^{37}}$
27. Find the value of a if $\frac{6}{3 \sqrt{2}-2 \sqrt{3}}=3 \sqrt{2}-a \sqrt{3}$
28. Factories: $64 a^{2}+96 a b+36 b^{2}$

OR
If $x^{2}+y^{2}=49$ and $x-y=3$, then find the value of $x^{3}-y^{3}$.
29. Find the product of $\left(p-\frac{1}{p}\right)\left(p+\frac{1}{p}\right)\left(p^{2}+\frac{1}{p^{2}}\right)\left(p^{4}+\frac{1}{p^{4}}\right)$
30. In the adjoining figure $\mathrm{PQ} \| \mathrm{RS}$, find x and y.

Or
In the figure,
If $p: q=11: 19, \mathrm{AB} \| \mathrm{CE}$ then find the values of p, q and r.

31. The perimeter of a triangle is 50 cm . One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.

Section-D

Section D consists of 4 questions of 5 marks each.

32. Find the factor of the polynomial $x^{2}-5 x+6$ and values of $\mathrm{p}(x)$ at $x=10,20$ and 50 .
33. ABCD is a parallelogram. Side AB is produced on both sides to E and F as in figure such that $\mathrm{BE}=\mathrm{BC}$ and $\mathrm{AF}=\mathrm{AD}$. Show that EC and FD when produced meets at right angle.

P is mid point of side $C D$ of a parallelogram $A B C D$. A line through C parallel to $P A$ intersects $A B$ at Q and $D A$ produced at R. Prove that $D A=A R$ and $C Q=Q R$.

34. Prove that the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

OR
In figure, O is the centre of the circle, $\mathrm{BD}=\mathrm{OD}$ and $\mathrm{CD} \perp \mathrm{AB}$. Find $\angle \mathrm{CAB}$.

35. A hemispherical bowl is to be painted from inside at the rate of $₹ 20$ per $100 \mathrm{~m}^{2}$. The total cost of painting is ₹ 30.80 . Find
(i) Inner surface area of the bowl.
(ii) Volume of air inside the bowl.

Section-E

Section E consists of $\mathbf{3}$ case study based questions of 4 marks each.

36. During a Van Mahotsava week, 50 trees were planted by each school. After one month, the following number of trees survived in the 25 schools.

30	27	26	32	40
32	26	25	30	20
38	30	29	15	21
25	27	21	20	29
42	40	37	16	22

i) Draw frequency table using class size 5 .

OR
Find the range of the given data.
ii) In how many schools plants survived between 35 and 40 .
iii) Which class size has minimum frequency.
37. Ritesh opened the door at an angle of 43° to enter the class. In the recess, he came out of the class by opening the door at an angle of 72°. After the recess, he again opened the door at 43° and entered the class. The door length is 80 cm .

Fig. 1

Fig. 2

Fig. 3

i) The types of the triangle formed by opening the door is \qquad .. .
ii) Which of the triangles are congruent?
iii) What is the measure of $\angle \mathrm{P}$?
38. MNQ school provides free education to underprivileged children. Municipal corporation of a city wants to open a school in the town on a rectangular plot ABCD as shown in figure. But this plot belongs to Amar Singh who has agreed to exchange it with a triangular plot PQR out of the town as shown in figure. Based on the above information, answer the following questions:

IX - Mathematics
i) What are the coordinates of vertex C of rectangular plot?
ii) What is the perpendicular distance of point C form x -axis?
iii) What is length of BC . What will be the coordinates of foot of perpendicular drawn from D , on y -axis.

ANSWERS

1. (c) $10 / 4$
2. (d) $-5 / 2$
3. (a) Linear
4. (c) $(-1,1)$
5. (b) $y=2$
6. (c) 74°
7. (b) 55°
8. (b) $3 \pi r^{2}$
9. (d) $54 \mathrm{~cm}^{2}$
10. (a) 38°
11. (b) 40°
12. (c) $2^{1 / 6}$
13. (c) 180°
14. (b) 105°
15. (d) $\frac{4}{3} \pi r^{3}$
16. (a) Only one
17. (d) 96
18. (a) 90°
19. (b)
20. (c)
21. $x=14$ OR $+5 \sqrt{3}$
22. $P=\frac{4 a-10}{9}$
23. $(0,5)$ and $(2,0)$
24. $x=32,140^{\circ}$

OR
72°
25. $4 \sqrt{3} \mathrm{~cm}^{2}$
26. $\frac{1}{2}$
27. $a=-2$
28. $(8 a+6 b)^{2}$

OR
207
29. $P^{8}-\frac{1}{q^{8}}$
30. $x=55^{\circ}, y=40^{\circ}$

OR
$33^{\circ}, 57^{\circ}, 65^{\circ}$
31. $13,17,20,109.6 \mathrm{~cm}^{2}$
32. $(x-3)(x-2), 56,306,2256$
34. 30°
35. $154 \mathrm{~m}^{2}, 251.5 \mathrm{~m}^{3}$
36. (i) Draw table OR 27
(ii) 1
(iii) $35-40$
37. (i) Isosceles
(ii) $\triangle \mathrm{PQR}$ and $\triangle \mathrm{XYZ} \quad \mathrm{OR}$ BC
(iii) $68 \frac{1}{2}^{\circ}$
38. (i) $(8,8)$
(ii) 8 units
(iii) 3 units
(iv) $(0,8)$

IX - Mathematics

