Directorate of Education, GNCT of Delhi

Suggestive Answer of Practice Paper

Class – XII

Chemistry (Code: 043)

Term – II (2021 – 2022)

Time Duration: 2 hrs.

Maximum Marks: 35

[SECTION A]

Question Number	Answer / Value Point(s)
1.	i) A ; regular decrease in molar conductivity due to complete dissociation
	ii) By using Kohlrausch law of independent migration of ions
2.	i) Order of a reaction is an experimental quantity. It can be zero and even a fraction but molecularity cannot be zero or a non integer.
	ii) Order is applicable to elementary as well as complex reactions whereas molecularity is applicable only for elementary reactions.For complex reaction molecularity has no meaning.
	iii) For complex reaction, order is given by the slowest step and molecularity of the slowest step is same as the order of the overall reaction.
	(or any 2 differences)
3.	Using chloropropane/bromopropane in place of R-X in following reaction, propanamine will be product.
	$\begin{array}{c c} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
	$ \begin{array}{c} O \\ \\ C \\ C \\ \\ O \end{array} \\ N - R \end{array} \xrightarrow{\text{NaOH(aq)}} \qquad $

[SECTION B]

Question Number	Answer / Value Point(s)
4.	i) Peptization process takes place by converting the Fe(OH) ₃ precipitate into colloidal solution.

	ii) The scattering of light illuminates the path of the beam in the colloidal solution known as Tyndall effect.
	iii) Colloidal particles moves towards the oppositely charged electrode and the phenomenon is called electrophoresis.
5.	Anode: Ni(s) \rightarrow Ni ²⁺ (aq) + 2 e ⁻
	Cathode: $Ag^+(aq) + e^- \rightarrow Ag(s)$
	Overall: Ni(s) + 2Ag ⁺ (aq) \rightarrow Ni ²⁺ (aq) + 2Ag(s)
	$E^{\circ}_{(cell)} = 0.80 - (0.25) = 0.55 V, n = 2$
	$E_{(cell)} = E^{\circ}_{(cell)} - \frac{0.059}{n} \frac{\log [Ni^{2+}]}{[Ag^{+}]^{2}}$
	$= 0.55 - 0.059 \log (10^{-3})$
	$2 (10^{-1})^2$
	$= 0.55 - 0.0295 \log (10^{-1})$
	= 0.55 - 0.0295(-1)
	$E_{(cell)} = 0.5795 V$
	OR
	i)
	$\Lambda_m^{\rm o}(\rm CH_3\rm COOH) = \Lambda_{\rm CH_2\rm COO^-}^{\rm o} + \Lambda_{\rm H^+}^{\rm o}$
	$= \Lambda^{o}_{\mathrm{CH}_{3}\mathrm{COO}^{-}} + \Lambda^{o}_{\mathrm{Na}^{+}} + \Lambda^{o}_{\mathrm{H}^{+}} + \Lambda^{o}_{\mathrm{Cl}^{-}} - (\Lambda^{o}_{\mathrm{Na}^{+}} + \Lambda^{o}_{\mathrm{Cl}^{-}})$
	$= \Lambda^{\circ}_{m(\mathrm{CH,COONa})} + \Lambda^{\circ}_{m(\mathrm{HCl})} - \Lambda^{\circ}_{m(\mathrm{NaCl})}$
	$= (91.0 + 425.9 - 126.4) \text{ S cm}^2 \text{ mol}^{-1}$
	$= 390.5 \text{ S cm}^2 \text{ mol}^{-1}$
	ii)
	$\alpha = \frac{\Lambda_m}{\Lambda_m}$
	Λ_m°
	$\alpha = \frac{39.0}{390.5} = 0.1$
	% ionization = $\alpha \times 100$ % = 10 %
	% unionized = 90 %
6.	Time taken for 50 % completion, $t_{1/2} = 20$ min
	$t_{1/2} = 0.693 / k$
	$k = 0.693 / 20 \min = 0.035 \min^{-1}$

	$k = \frac{2.303}{t} \log \frac{[R]o}{[R]}$
	After 90 % completion,
	$[R] = [R]_{o} - 0.9 [R]_{o} = 0.1 [R]_{o}$
	$t = \frac{2.303}{0.035} \log \frac{[R]o}{[R]}$
	$t = \frac{2.303}{0.035} \log \frac{[R]o}{0.1[R]o}$
	$t = \frac{2.303}{0.035} \log 10$
	$t = \frac{2.303}{0.035} = 65.8 \text{ min}$
	OR
	i) From experiment 1 and 2,
	$\frac{(\text{Rate})_1}{(\text{Rate})_2} = \frac{k}{k} \frac{(0.30)^x (0.30)^y}{(0.30)^y}$
	$\frac{0.096}{0.384} = \frac{k \ (0.30)^{\text{x}} \ (0.30)^{\text{y}}}{k \ (0.60)^{\text{x}} \ (0.30)^{\text{y}}}$
	x = 2
	Similarly, from experiment 1 and 3 $y = 1$
	So, order with respect to reactant $A = 2$ order with respect to reactant $B = 1$ Overall Order of reaction $= 1 + 2 = 3$
	ii) Rate = $k [A]^x [B]^y$
	From experiment 1,
	$(\text{Rate})_1 = k \ (0.30)^x \ (0.30)^y$
	$k = 0.096 / (0.30)^2 (0.30)$
	$k = 3.55 \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$
	iii) Rate = $k [A]^{x} [B]^{y}$
	Rate = $3.55 (0.02)^2 (0.02)$
	Rate = $2.84 \times 10^{-5} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$
7.	i) Amminechloridobis (ethane-1,2-diamine) cobalt(III)
	ii) In $[Ni(CN)_4]^{2-}$, there is Ni^{2+} ion for which the electronic configuration in the valence shell is $3d^8 4s^0$.

C: Benzoic acid
D: $C_6H_5CO-CH_2-C(OH)(CH_3)-C_6H_5$ (Aldol oroduct)
Name of Reaction (A to B) : Clemmensen reduction

[SECTION C]

Question Number	Answer / Value Point(s)
12.	 i) Aldehydes are generally more reactive than ketones in nucleophilicaddition reactions due to steric and electronic reasons. Sterically, the presence of two relatively large substituents in ketones hinders the approach of nucleophile to carbonyl carbon than in aldehydes having only one such substituent. Electronically, aldehydes are more reactive than ketones because two alkyl groups reduce the electrophilicity of the carbonyl more effectively than in former. ii) C₆H₅CH=NNH-CO-NH₂ iii) The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon atom of the carbonyl group present in propanal. The polarity of the carbonyl group is reduced in benzaldehyde due to resonance as
	shown below and hence it is less reactive than propanal. iv) C ₆ H ₁₁ -CH(OH)- C ₆ H ₅
	v) Fehling's Test: Propanal gives red precipitate while benzaldehyde does not.