Directorate of Education, GNCT of Delhi

Solution of Practice Paper Term -II (2021-22)

Class – XII

Mathematics (Code: 041)

Q. No.	VALUE POINTS
1	$ \begin{array}{c c} \mathbf{SECTION} - \mathbf{A} \\ \hline $
	Let $I = \int \left(\frac{1+x}{1+x^2}\right) dx = \int \left(\frac{1}{1+x^2}\right) dx + \int \left(\frac{x}{1+x^2}\right) dx$ (1)
	$\int \left(\frac{x}{1+x^2}\right) dx = \tan^{-1} x [\text{formula}]$ to evaluate $\int \left(\frac{x}{1+x^2}\right) dx \text{ put } 1+x^2 = t \text{ on differentiating both sides we get } 2x dx = dt \text{ or } x dx = \frac{1}{2} dt$
	to evaluate $\int \left(\frac{1}{1+x^2}\right)^{t/2} dx$ put $1+x = t$ on differentiating both sides we get $2x dx = dt$ or $x dx = \frac{1}{2} dt$ $\int \left(\frac{x}{1+x^2}\right) dx = \int \left(\frac{1}{2} \frac{dt}{t}\right) = \frac{1}{2} \log t = \frac{1}{2} \log 1+x^2 $
	$\begin{vmatrix} J & 1+x^2 \end{pmatrix}^{mt-J} \begin{pmatrix} 2 & t \end{pmatrix} - 2^{\log t -2} 2^{\log t -2} \\ = \frac{1}{2} \log 1 + x^2 \end{vmatrix}$
	Putting these values in equation (1) we have $I = \tan^{-1} x + \frac{1}{2} \log_{1} + x^{2} + c$
	OR
	SOL- $\int \left(\frac{3x-6+6-1}{(x-2)^2}\right) dx = \int \left(\frac{3(x-2)+5}{(x-2)^2}\right) dx = 3\log x-2 +5\int (x-2)^{-2} dx$
	$=3\log x-2 +5\frac{(x-2)^{-1}}{-1}+c=3\log x-2 -\frac{5}{x-2}+c$
2	Given differential equation is
	$\frac{d}{dx}\left\{\left(\frac{dy}{dx}\right)^3\right\} = 0$
	$=>3\left(\frac{dy}{dx}\right)^{3-1}\frac{d}{dx}\left(\frac{dy}{dx}\right)=0$
	$=>3\left(\frac{dy}{dx}\right)^2\frac{d^2y}{dx^2}=0$
	clearly the highest order derivative occurring in the differential equation is $\frac{d^2y}{dx^2}$ so its order is 2. Also it
	is a polynomial equation in derivative and the highest power raised to is $\frac{d^2y}{dx^2}$ one so its degree is one.
	Hence the sum of the order and degree of the above given differential equation is $2+1=3$

3	1		such that $\hat{a}+\hat{b}$ is	also a unit vecto	or				
	$ \hat{a} = \hat{b} = \hat{a} + \hat{b} $								
	we know that $ \hat{a} + \hat{b} ^2 = (\hat{a} + \hat{b})^2 = (\hat{a})^2 + (\hat{b})^2 + 2\hat{a}\hat{b}$ (2)								
	$ \hat{a} - \hat{b} ^2 = (\hat{a} - \hat{b})^2 = -(\hat{a})^2 + (\hat{b})^2 - 2\hat{a}\hat{b} (3)$								
	adding equations (2) and (3) we have $ \hat{a} + \hat{b} ^2 + \hat{a} - \hat{b} ^2 = 2(\hat{a})^2 + 2(\hat{b})^2 = \hat{a} ^2 + 2 \hat{b} ^2$								
		1 1 1	· · · · · · · · · · · · · · · · · · ·						
	1 -	·	$ \hat{b} \hat{a}+\hat{b} $ (each=1)	1)					
		$ \hat{b} ^2 = 2 \hat{a} ^2 + 2 \hat{b} ^2 =$							
	$\left \hat{a} - \hat{b} \right ^2$	$\frac{=3}{4} = \hat{a} - \hat{b} = \sqrt{3}$							
4	$\frac{8}{\sqrt{89}}, \frac{-}{\sqrt{8}}$	$\frac{4}{20}, \frac{3}{\sqrt{20}}$							
5	√89 √8	89 √89							
	Sol-								
	Three balls are drawn one by one without replacement from a bag containing 5 whit and 4 green								
	balls.								
	Let X denote number of green balls (out of three green balls drawn)								
	=> $X=0,1,2$ and 3 only(and not upto 4, the number of green balls in the bag $P(X=0)$ = Probability of getting green no green balls in the three draws i.e., all the three white								
		$P(WWW) = \frac{5}{9}x + \frac{4}{8}$,			
		5 0	/ 304 42	1 11 / 11	1 1 1 11)	1 1			
	P(X=1)= Probability of getting one green balls (and hence two white balls) in three draws $=P(GWW)+P(WGW)+P(WWG)=\frac{4}{9}x\frac{5}{8}x\frac{4}{7}+\frac{5}{9}x\frac{4}{8}x\frac{4}{7}+\frac{5}{9}x\frac{4}{8}x\frac{4}{7}$								
	=P(GW	W)+P(WGW)+	$P(WWG) = \frac{1}{9}x\frac{3}{8}$	$x\frac{1}{7} + \frac{3}{9}x\frac{1}{8}x\frac{1}{7} +$	$-\frac{3}{9}x\frac{1}{8}x\frac{1}{7}$				
	$=\frac{240}{504}=$	<u>20</u>							
	304	72	-1.:1:4 £44:	. 4 1	11- (1 1	1.14 - 111 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
		4 =	pability of gettin	g two green ba	ils (and hence one	white ball) in three			
	draws=	42							
	and sim	nilarly $P(X=3)=1$	Probability of ge	tting all the thre	e green balls =				
	P(GGG	$(x) = \frac{4}{9}x\frac{3}{8}x\frac{2}{7} = \frac{2}{42}$							
		robability distri							
	X	0	1	2	3				
				_					
	P(X)	5	20	15	15				
		$\frac{5}{42}$	20 42	42	15 42				
6	Solution- T	here are 26 red	cards and 26 blac	k cards in a pac	ck of 52 playing card	ds.			
					card respectively				
			P(first card is r	ed and second	one is black)+P(fin	rst card is black and			
	second one								
	=P(R)+P(R)	$\left(\frac{B}{R}\right) + P(B)P\left(\frac{R}{B}\right)$							
	$=\frac{26}{52} \times \frac{26}{51} + \frac{2}{5}$								
		52 ^x 51							
	$=\frac{26}{51}$								
	31								

	SECTION – B
7	Let $I = \int \left(\frac{dx}{1+x+x^2+x^3}\right) = \int \left(\frac{dx}{(1+x)+x^2(1+x)}\right) = \int \left(\frac{dx}{(1+x)(1+x^2)}\right)$ let $\left(\frac{dx}{(1+x)(1+x^2)}\right) = \frac{A}{1+X} + \frac{BX+C}{1+x^2}$ ————————————————————————————————————
8	The given differential equation is $xdy - ydx = \sqrt{x^2 + y^2}dx$ dividing by dx $x\frac{dy}{dx} - y = \\ = > x\frac{dy}{dx} = y + \sqrt{x^2 + y^2} = > \frac{dy}{dx} - \frac{y}{x} - \frac{\sqrt{x^2 + y^2}}{x}$ Put $y = vx = > \frac{dy}{dx} = v + x\frac{dv}{dx}$ Therefore $v + x\frac{dv}{dx} - \frac{vx}{x} = \frac{\sqrt{x^2 + v^2}x^2}{x} = > v + x\frac{dv}{dx} - v = \sqrt{1 + v^2}$ $= > \int \left(\frac{dv}{\sqrt{1 + v^2}}\right) = \int \left(\frac{dx}{x}\right) = > \log v + \sqrt{1 + v^2} = \log x + \log c = > \log\log \left \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}\right = \log Cx = > \frac{y}{x} + \sqrt{\left(\frac{x^2 + y^2 x^2}{x^2}\right)}$ $= Cx = > y + \sqrt{x^2 + y^2} = Cx^2$ OR The given differential equation is $\frac{dy}{dx} - 3y \cos(x) = \sin(2x)$ Or $\frac{dy}{dx} - 3y \cos(x) = \sin(2x)$ given that $y = 2$ when $x = \frac{\pi}{2}$ Compairing with $\frac{dy}{dx} + Py = Q$ we have $P = 3 \cot x$ and $Q = \sin 2x$

	$\int Pdx$
	$=-3\int \cot x dx = -3\log \sin x = \log(\sin x)^{-3}$
	$IF = \int e^{pdx} = e^{\log(\sin x)^{-3}} = (\sin x)^{-3} = \frac{1}{\sin^3 x}$
	The general solution is $y(IF.) = \int Q(IF) dx + C$
	$\int \operatorname{or} y \frac{1}{\sin^3 y} = \int \sin 2x \frac{1}{\sin^3 y} dx + C$
	$\frac{y}{\sin^3 x} = \int \frac{(2 \sin x \cos x)}{\sin^3 x} dx + C$
	$=2\int \frac{\cos x}{\sin^2 x} dx + C = 2\int \frac{\cos x}{\sin x \cos x} dx + C = \int 2 \csc x \cot x dx = -2 \csc x \cot x dx = -2 \csc x \cot x dx$
	$\begin{vmatrix} or \\ y - 2 \end{vmatrix}$
	$\frac{y}{\sin^3 x} = \frac{-2}{\sin x} + C$
	$y=\sin^3 x$ multiplying every term by LCM= $\sin^3 x$
	$y=-2\sin^2 x + c\sin^3 x$ To find C putting y=2 when $x=\frac{\pi}{2}$ (given in (1)
	$2=-2\sin^2\frac{\pi}{2}+\cos^3\frac{\pi}{2}$
	or 2=-2+c or c=4 puttung c=4 the required particular solution is
	$y=-2\sin^2 x+4\sin^3 x$
9	$\vec{a} \times \vec{b} = \vec{c} = \vec{c} \perp \vec{a}$ and $\vec{c} \perp \vec{b}$
	(By def of cross product)(1) similarly $\vec{b} \times \vec{c} = \vec{a} = \vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ (2)
	from (1) and (2) we have $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles.
	Now $\vec{a} \times \vec{b} = \vec{c} \text{ (given)} = \vec{a} \times \vec{b} = \vec{c} $
	Using $(2) \vec{a} \vec{b} \sin 90^0 = \vec{c} $
	$ \vec{a} \vec{b} ^{=} \vec{c} (3)$
	similarly $\vec{b} \times \vec{c} = \vec{a} \Rightarrow \vec{b} \times \vec{c} = \vec{a} $
	$=> \vec{b} \vec{c} = \vec{a} (4)$ Dividing (3) by(4) (to eliminate $ \vec{b} $) we have
	$\frac{ \vec{a} }{ \vec{c} } = \frac{ \vec{c} }{ \vec{a} } = \vec{a} ^2 = \vec{c} ^2 \text{therefore } \vec{a} = \vec{c} (5)$
	dividing (3) by (5) $ \vec{b} $ =1 putting it in (4) we have
	$ \vec{c} = \vec{a} $
10	Solution-Here $\vec{b_1} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\vec{b_2} = 2\hat{i} + 4\hat{j} - 4\hat{k} = 2(\hat{i} + 2\hat{j} - 2\hat{k})$
	$=2\vec{b}_1$ Therefore, the lines are parallel now using the formula for distance between parallel lines =
	$\frac{\left \left(\vec{a}_{2}-\vec{a}_{1}\right)\times\vec{b}\right }{\left \vec{a}_{1}-\vec{a}_{2}\right }$
	b
	Shortest distance is $2\sqrt{5}$ OR
	Sol-
	Given point is $\vec{a}_1 = (1, 2, -4) = \hat{i} + 2\hat{j} - 4\hat{k}$ we know that vector along the line $\vec{r} =$
	$\hat{i}+2\hat{j}-4\hat{k}=\lambda(2\hat{i}+3\hat{j}+6\hat{k})$ is $\vec{b_1}=(2\hat{i}+3\hat{j}+6\hat{k})$ and a vector along the line $\vec{b_2}=(\hat{i}+\hat{j}-\hat{k})$
	we know vector equation of the plane passing through point \vec{a} and parallel to the two given lines is $(\vec{r} - \vec{a_1}) \cdot \vec{n} = 0$
	where $\vec{n} = \vec{b_1} \times \vec{b_2}$ (1)
	$now \vec{n} = \vec{b}_1 \times \vec{b}_2 $

$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \end{vmatrix}$
$= \begin{vmatrix} 2 & 3 & 6 \\ 1 & 1 & -1 \end{vmatrix}$
$=\hat{i}(-3-6)-\hat{j}(-2-6)+\hat{k}(2-3)=-9\hat{i}+8\hat{j}-\hat{k}$
from equation $(1)\vec{r} \cdot \vec{n} - \vec{a_1} \cdot \vec{n} = 0 \implies \vec{r} \cdot \vec{n} = \vec{a_1} \cdot \vec{n} = (2)$
putting values of \vec{a}_1 and \vec{n} in (2) equation of required plane is
i.e., $\vec{r} \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = (\hat{i} + 2\hat{j} - 4\hat{k}) \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = -9 + 16 + 4$
or $\vec{r} \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = 11$ (Vector form of the plane)
$\operatorname{or}(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (-9\hat{i} + 8\hat{j} - \hat{k}) = 11$
or $9x+8y-z=11$
or 9x+8y-z-11=0 (Cartesian form of the plane)

SECTION - C

$$11 \qquad \text{Let I} = \int_{1}^{2} |x^3 - x| dx$$

Again let $f(x) = x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1)$

Now break the limit at x=0,1 (because on putting f(x)=0 we get x=0,1,-1)

It is clear that $\chi^3 - \chi \ge 0$ on [-1,0]

$$x^3 - x \le 0 \text{ on}[0,1]$$

 $x^3 - x \ge 0 \text{ on}[1,2]$

Hence the interval of the integral can be subdivided as

$$\int_{-1}^{2} |x^{3} - x| dx = \int_{-1}^{0} (x^{3} - x) dx - \int_{0}^{1} (x^{3} - x) dx + \int_{1}^{2} (x^{3} - x) dx$$

$$= \int_{-1}^{0} (x^{3} - x) dx + \int_{0}^{1} (x - x^{3}) dx + \int_{1}^{2} (x^{3} - x) dx = \frac{11}{4}$$

Given equation of the circle is $x^2 + y^2 = 16$ and $\sqrt{3}y = x$, represents a line through origin.

The line $y = \frac{1}{\sqrt{3}}x$ intersect the circle.

Therefore
$$x^2 + \frac{x^2}{3} = 16$$

$$\frac{3x^2 + x^2}{3} = 16 = >4x^2 = 48$$

$$=>_{x}^{2}=12=> x=\pm 2\sqrt{3}$$

When $x=2\sqrt{3}$ then $y=\frac{2\sqrt{3}}{\sqrt{3}}=2$

Required area shaded in first quadrant =(Area under the line $y = \frac{1}{\sqrt{3}}x$ from x = 0 to $2\sqrt{3}$) +

(Area under the circle from $x=2\sqrt{3}$ to x=4

$$= \int_{0}^{2\sqrt{3}} \frac{1}{\sqrt{3}} x \, dx + \int_{2\sqrt{3}}^{4} \sqrt{16 - x^2} \, dx$$

after solving it we get required area = $\frac{4\pi}{3}$ sq units

Required area (shaded)

= Area under curve $y = x^3$ with respect to 'x' axis from x = -2 to x = 1

$$= \int_{-2}^{1} |x^{3}| dx = \left| \int_{2}^{0} |x^{3}| dx \right| + \int_{0}^{1} |x^{3}| dx.$$

$$= \left| \int_{-2}^{0} -x^{3} dx \right| + \int_{0}^{1} x^{3} dx$$

As cube a value below 0 is negative

$$= \frac{-x^4}{4} \bigg]_{-2}^{0} + \frac{x^4}{4} \bigg]_{0}^{1} = - \left[0 - \frac{(-2)^4}{4} \right] + \left[\frac{1}{4} - \frac{0}{4} \right]$$

$$=-\left[\frac{-16}{4}\right]+\frac{1}{4}=\frac{16}{4}+\frac{1}{4}=\frac{17}{4}$$
 sq.units

We know that d.r.'s of the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ are is denominators 2, 3, -6

therefore d.r.'s of any line parallel to it are also 2,3,-6 therefore equation of the line through P (1,-2,3) and parallel to the given line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ are

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$$

$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-6} (=\lambda) - \dots (1)$$

let this line meet the given plane x-y+z=5 in the point Q say) from equation (1) x-1=2 λ y+2=3 λ ,z-3=-6 λ =>x=2 λ +1 ,y=3 λ -2

$$z=-6\lambda+3$$

therefore point Q is Q($2\lambda+1$, $3\lambda-2$, $-6\lambda+3$) for some real λ

But this point Q lies on the plane x-y+z=5 therefore

$$(2\lambda+1)$$
- $(3\lambda-2)(-6\lambda+3)$ =

$$2\lambda + 1 - 3\lambda + 2 - 6\lambda + 3 = 5 = > -7\lambda = -1 = > \lambda = \frac{1}{7}$$

putting $\lambda = \frac{1}{7}$ in (3) coordinates of point Q are $(\frac{9}{7}, \frac{-11}{7}, \frac{15}{7})$

Required distance is PQ

$$\sqrt{\left(\frac{9}{7}-1\right)^2+\left(\frac{-11}{7}+2\right)^2+\left(\frac{15}{7}-3\right)^2}=1$$

$$\sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{-6}{7}\right)^2}$$

	$\sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = \sqrt{\frac{49}{49}} = 1$
	$\sqrt{49}$ 49 49 $\sqrt{49}$
14	(a)0.9 2.
	(b)0.083