Directorate of Education, GNCT of Delhi Suggestive Key Points Practice paper 2;Term - 2 (2021-22) Class – XII Physics (Code: 042)

3	Correct steps of derivation with a clear ray diagram.
4	(a) The wavelength is given by $\lambda = c/f = 1.5 \times 10^{-2} \text{ m}$ (b) Bo=Eo/c=1.6×10^-7 T (c) Energy density due to the electric field, EE=1/2 ϵ_0 E ² Energy density due to the magnetic field, EB=1/2B ² /µo on solving above equations, EE=EB
5	 (i) Intensity of incident radiations was kept constant. (ii) Frequency v₁ is highest because the stopping potential is more negative for higher frequencies of incident radiation.
6	Total energy E=-13.6 eV K.E = -E = 13.6 eV P.E = -2. K. E = -2×13.6 = $-27.2 \text{ eV}.$
7	Correct labelled diagram Correct expression
8	a) Correct derivation of lens formula with ray diagram b) Time taken for 360° shift = 24 h

	We know that the wavelength of blue light is less than that of red light. So diffraction bands become narrower and crowded together.
10	 a) This is because of the fact that nuclear forces between neutrons are weaker than that between protons. b)
	Energy, E = $10^{-3} \times (3 \times 10^8)^2$ J E = $10^{-3} \times 9 \times 10^{16} = 9 \times 10^{13}$ J
	Thus, if one gram of matter is converted to energy, there is a release of enormous amount of energy.
11	The ratio of intensity of maxima and minima is $ \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2} = \frac{\left(A_1 + A_2\right)^2}{\left(A_1 - A_2\right)^2} $ $ \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{\left(A_1 + A_2\right)^2}{\left(A_1 - A_2\right)^2} = \frac{100}{64} $ $ \Rightarrow \frac{\left(A_1 + A_2\right)}{\left(A_1 - A_2\right)} = \frac{10}{8} $ $ \Rightarrow 8A_1 + 8A_2 = 10A_1 - 10A_2 $ $ \Rightarrow \frac{A_1}{A_2} = \frac{9}{1} $ As, $ \frac{I_1}{I_2} = \left(\frac{A_1}{A_2}\right)^2 $ $ \frac{I_1}{I_2} = \frac{81}{1} $ OR

	$eta_0 = rac{2D\lambda}{b}$ Given, distance of slit from the screen, $D=2m$ $\therefore eta_0 = rac{2 imes 2 imes 600 imes 10^{-9}}{0.6 imes 10^{-3}} = 4mm$
12	a) (iii) b) (ii) c) (iv) d) (ii) e) (i) From the curve, I = 20 mA, V = 0.8 V, I = 10 mA when V = 0.7 V Now, $R = \Delta V/\Delta I$ = 0.1 V/10 mA = 0.1 V/10 mA $= 10 \Omega$.