Directorate of Education, GNCT of Delhi Practice Paper

(2024-25)

Class – XI

Mathematics (Code: 041)

Time: 3 hours

Maximum Marks: 80

- 1. This Question paper contains 38 questions divided into five sections A,B,C,D,E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has question number (1-18) as MCQ's and Question number (19-20) Assertion-Reason based questions of 1 mark each.
- 3. Section B has Question number (21-25) of Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has Question number (26-31) of Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has Question number (32-35) of Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has Question number (36-38) of Source based/Case based/passage based/integrated units of assessment questions (4 marks each) with sub parts.
- 7. There is no overall choice however an internal choice have been provided in 2 questions in Section -B , 3 questions in Section- C and 2 questions in Section- D_

	Section – A						
Q.	Question Number 1-18 are of MCQ type question one mark each.						
1.	$\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} + \cos 240^{\circ}$) ° =	1				
	(a) $\frac{1}{2}$	(b) $\frac{-1}{2}$					
	(c) 1	(d) 0					
2.	Which of the following is <u>not</u> equal to c	os 2x ?	1				
	(a) $\cos^2 x - \sin^2 x$	(b) $1 - 2\sin^2 x$					
	(c) $1 - 2\cos^2 x$	(d) $\frac{1 - \tan^2 x}{1 + \tan^2 x}$					
3.	Greatest value of sinx cos x is :						
	(a) 0	(b) -1					
	(c) 1	(d) 0.5					
4.	The domain of the function f given by $f(x) = \frac{x-4}{x^2-16}$ is equal to :						
	(a) R-{4}	(b) R-{-4}					
	(c) R	(d) R-{4,-4}					

			1		
	If $[x]^2 - 5[x] + 6 = 0$ where $[.]$ denotes the	greatest integer function , then			
	(a) $x \in [3, 4]$	(b) <i>x</i> ∈ (2,3]			
	(c) $x \in [2,3]$	(d) <i>x</i> ∈[2,4)			
6.	If $\theta = 135^{\circ} = \frac{a\pi}{b}$ (In Radian) where a an	d b are coprime numbers , then a+b=	1		
	(a) 4	(b) 5			
	(c) 6	(d) 7			
7.	$(1+i)^4 = p + iq$ then $(p^2 + q^2)$ equals to		1		
	(a)2	(b) 4			
	(c) 8	(d)16			
8.	If $z = (3 + \sqrt{2}i)$ then z X z equals:		1		
	(c) √11	(d) 5			
0	If $z = \frac{(2+3i)(3+4i)}{4+5i}$, then Im (z, \overline{z}) equ	als to :	1		
9.	(a) 0	(b) $\frac{5\sqrt{13}}{\sqrt{41}}$			
	(c) $\frac{\sqrt{13}}{\sqrt{41}}$	(d) $\frac{5}{\sqrt{41}}$			
LO.	If $\frac{-2}{r-3}$	>0 then x belongs to :	1		
	(a) (3,∞)	(b) [−∞,∞)			
	(c) (−∞,3)	(d) (−∞,3]			
11.	If $ x-2 \ge -3$ then x ϵ :				
	(a) { }	(b) $(-\infty,\infty)$			
	(c) [-1 , 5] only	(d) (-1 , 5) only			

12.	If the focus of the parabola is $(0, -3)$ and its directrix is y=3 then its equation is :					
	(a) $x^2 = 12 y$	(b) $x^2 = -12 y$				
	(c) $y^2 = 12 x$	(d) $y^2 = -12x$				
13.	The reflection of the point (α, β, γ) in xy -plane is :					
	(a) $(\alpha, \beta, -\gamma)$ (b) $(0, 0, \gamma)$					
	(c) (α,β,0)	(d) $(-\alpha, -\beta, \gamma)$				
14.	If $P = \lim_{x \to 0} \frac{\sin 5x}{\tan 7x'}$	then (7P-2) equals :	1			
	(a) 0	(b) 1				
	(c) 3	(d) 5 is				
15.	Value of $\lim_{x \to 0} \left(\frac{x^3 + x}{x} \right)$	$\left(\frac{x^2+x-3}{-1}\right)$ is equal to :	1			
	(a) 0	(b)3				
	(c) 5	(d) 6				
16.	If P(A)=0.2 , P(B)=0.3 and P(A r	$(B)=0.1$ Then $P(A \cup B)$ equal to :	1			
	(a) $\frac{1}{11}$	(b) $\frac{2}{11}$				
	(c) $\frac{5}{11}$	(d) $\frac{6}{11}$				
17.	If A and B three mutually exclusive and exhaustive events of an experiment such					
	that $3P(A)=2P(B)=P(A)$	C) then $P(A)$ equals to :	1			
	(a) $\frac{4}{15}$	(b) <u>8</u> 15				
	(c) $\frac{1}{2}$	(d) $\frac{2}{2}$				
		l g				
18.	Mean and standard deviation of 1, 2, 3, 4, 5, 6 is :					
	(a) $3, \frac{35}{12}$	(b) 3,3				
	(c) $\frac{7}{2}, \sqrt{\frac{35}{12}}$	$\left(d\frac{7}{2},\sqrt{3}\right)$				
	(ASSERTION-REASO	N BASED QUESTIONS)				
	In the following questions, a statement of Reason (R). Choose the correct a	assertion (A) is followed by a statement of nswer out of the following choices.				
	(a) Both A and R are true and R is the correct explanation of A.					
	(b) Both A and R are true but R is not the correct explanation of A.					
	(c) A is true but R is false.					

19.	Assertion(A): If ${}^{2023}C_{2x-2} = {}^{2023}C_x$ then sum of all positive values of x is 677.	1
	Reason (R) : If ${}^{n}C_{x} = {}^{n}C_{y}$ then x=y or x+y=n	
20.	Assertion(A): The range of function $f(x)=\sin x + \cos x$ is $(-\sqrt{2}, \sqrt{2})$	1
	Reason (R) : For all $\theta \in R, -1 \le \sin \theta \le 1$	
	(Section B) This section contains 5 Very Short Answer (VSA)-type questions of 2 marks each.	
21.	How many cords can be drawn through 21 points on a circle ?	2
22.	Find the number of different 8 letter arrangement that can be made from the letter of the word "Daughter' so that vowels do not occur together.	2
23.	If $(x+iy)^3 = u+iv$ then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$.	2
24.	Find the derivative of $\frac{\sin^2 x}{1 + \cos x}$ w. r. t. x.	2
	OR CR	
	Find the value of $\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}$.	
25.	Prove that : tan 2023x -tan 2022x -tanx =tan 2023x tan 2022x tan x	2
	If tan (A+B)=p and tan (A-B)=q then Prove that $\tan 2A = \frac{p+q}{1-pq}$	
	<u>Section C</u>	
	This section contains 6 Short Answer (SA)-type questions of 3 marks ea	ich.
26.	In what ratio is the line joining the points $(2, 3)$ and $(4, -5)$ divided by the line passing through the points $(6, 8)$ and $(-3, -2)$.	3
27	Solve for x : if $ x-2 \le p$ when (a) p=2 (b) p=-3 (c) p=0	3
28.	If $\tan x = 3/4$, $\pi < x < \frac{3\pi}{2}$ then find the value of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$, $\tan \frac{x}{2}$	3
	OR Find the value of tan tan 22°30′	
29.	If $A=[x:x \in N, 2 < x \le 6]$ and	3
	$B = [x : x \in N, 4 \le x < 8]$ then find the value of (a) $A = (B, A) = B$	
20	(a) $A \cup B$ (b) $A \cap B$ Find the equation of the circle which passes through the point (1,1) and centre liesat the point of intersection of lines $x+y=4$ and $x-y=0$	3
50.	OR	1
50.	OR If the eccentricity of the ellipse is $\frac{5}{8}$ and distance between its foci is 10 . Find the	
50.	OR If the eccentricity of the ellipse is $\frac{5}{8}$ and distance between its foci is 10 . Find the equation of ellipse .	

	If $y = (x - 1)$	$(x+1)(x^2)$	$+1)(x^4+1)(x$	$x^{8}+1$ sin x+	1then find	$\frac{dy}{dx}$.			3
	OR								
	Find the valu	ue of $\lim_{x \to 0} \frac{t_0}{t}$	$\frac{anx - \sin x}{x^3}$						
				<u>(SECTI</u>	OND)				
-	This sectio	n contai	ns four L a	ong Answ	ver (LA)	-tvne aues	stions of 5		_
32.			4)4()5	· · · · · ·			5
	Find the coefficient of a^4 in the product of $(1-2a)^4(2-a)^5$ using binomial theorem. OR								
	Find $(x+1)^6$	$+(x-1)^{6}h$	ence or other	wise evaluate	$e\left(\sqrt{2}+1\right)^{6}$	$+(\sqrt{2}-1)^{6}$			
33.	Find the dor	nain and Ra	ange of $f(x)$:	$=\frac{x^2}{1+x^2}$ and	$g(x)=\frac{4-x}{x-x}$	$\frac{x}{4}$			5
34.	(a)Find the s	sum of n te	rms of the foll	owing series	7+77+777	+			5
	(b)Find the v	value of $\left(6^{2}\right)$	$^{1}.6^{\frac{1}{2}}.6^{\frac{1}{4}}$		$-\infty$				
		X			,				
	If a and b ar	e roots of y	$x^2 - 3x + p = 0$) and c,d are	roots of x^2	$^{2} - 12x + q =$	0 where a,b	,c ,d form a GP	-
	Prove that $\frac{a}{a}$	$\frac{q+p}{q-p} = \frac{17}{15}$							
35.	Find the me	an ,varianc	e and standar	d deviation f	or the follo	wing distribu	tion :		5
	Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100	
	Frequency	3	7	12	15	8	3	2	
	Question	IS				Ŧ			
36.	Geometrical mathematics has helped in art integration in the formation of designs of different patterns. Let us consider a square pattern. The mid points of whose sides are again joined to form								
	Geometrical patterns. Let	t us conside	er a square pa	ttern. The m	ration in th id points of	e formation of whose sides	of designs of are again jo	different ined to form	
	Geometrical patterns. Le another squ process con	t us conside are, the mi tinues infin	er a square pa d points of wh ity. The patter	ttern. The m nose sides ar rn looks like.	ration in th id points of e again joir	e formation of f whose sides ned to form a	of designs of are again jo nother squa	different ined to form re and the	
	Geometrical patterns. Le another squ process con	t us conside are, the mi tinues infin	des has helped er a square pa d points of wh ity. The patter	ttern. The m nose sides ar rn looks like.	ration in th id points of e again joir C'	e formation of f whose sides ned to form a	of designs of are again jo nother squa	different ined to form re and the	
	Geometrical patterns. Let another squ process con	t us conside are, the mi tinues infin	des has helped er a square pa d points of wh ity. The patter	ttern. The m nose sides ar rn looks like.	ration in th id points of e again joir C'	e formation of f whose sides ned to form a	of designs of are again jo nother squa	different ined to form re and the	
	Geometrical patterns. Le another squ process con	t us conside are, the mi tinues infin	des has helped er a square pa d points of wh ity. The patter	ttern. The m nose sides ar rn looks like.	ration in th id points of e again joir	e formation of f whose sides ned to form a C B'	of designs of are again jo nother squa	different ined to form re and the	
	Geometrical patterns. Le another squ process con	t us conside are, the mi tinues infin	des has helped er a square pa d points of wh ity. The patter	ttern. The m nose sides ar rn looks like.	ration in th id points of e again joir	e formation of f whose sides ned to form a C B'	of designs of are again jo nother squa	different ined to form re and the	
	Geometrical patterns. Let another squ process con If side of ori Answer the	ginal squar following:	e is 100 cm.	ttern. The m nose sides arr rn looks like.	ration in th id points of e again joir C' C' B" A'	e formation of f whose sides ned to form a C B'	of designs of are again jo nother squa	different ined to form re and the	
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is the ji) Find the a	ginal squar following: he side of source	e is 100 cm. quare A'B'C'D are A''B'C'D	ttern. The mose sides arrive looks like.	ration in th id points of e again joir C' C' B" A'	e formation of f whose sides ned to form a C B ^r B	of designs of are again jo nother squa	different ined to form re and the	1
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the	ginal square following: he side of s area of square e Perimeter	e is 100 cm. quare A'B'C'D are A'B'C'D". of square A'E	ttern. The m nose sides ar rn looks like.	ration in th id points of e again joir C' C' B" A'	e formation of f whose sides ned to form a C B'	of designs of are again jo nother squa	different ined to form re and the	1112
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the	ginal squar following: he side of surea of squar Perimeter e Sum of arc	e is 100 cm. quare A'B'C'D are A''B'C'D''. of square A'E	ttern. The m nose sides arr rn looks like.	ration in the id points of a again join C' C' B'' B'' A'	e formation of f whose sides ned to form a C B' B B	of designs of are again jo nother squa	different ined to form re and the	1 1 2
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the (iii) Find the	ginal square following: he side of so area of square e Perimeter	e is 100 cm. quare A'B'C'D are A'B'C'D". of square A'E	ttern. The m nose sides ar rn looks like.	ration in the id points of e again join C' C' B'' B'' A'	e formation of f whose sides ned to form a C B' B	of designs of are again jo nother squa	different ined to form re and the	1 1 2
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the (iii) Find the	ginal square following: he side of s area of square e Perimeter	e is 100 cm. quare A'B'C'D are A'B'C'D". of square A'E eas of squares	ttern. The m nose sides ar rn looks like.	ration in the id points of a again join C' C' B'' B'' A'	e formation of f whose sides ned to form a C B ^r B	of designs of are again jo nother squa	different ined to form re and the	1 1 2
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the (iii) Find the	ginal squar following: he side of s area of squa e Perimeter	e is 100 cm. quare A'B'C'D are A'B'C'D". of square A'E	ttern. The mose sides arrived in a content of the mose sin a content of the mose sides arrived i	Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr C	e formation of f whose sides ned to form a C B' B	of designs of are again jo nother squa	different ined to form re and the	1 1 2
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the (iii) Find the	ginal square following: he side of source e Sum of are	e is 100 cm. quare A'B'C'D are A'B'C'D". of square A'E	ttern. The m nose sides arr rn looks like.	Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr C	e formation of f whose sides ned to form a C B' B	of designs of are again jo nother squa	different ined to form re and the	1 1 2
	Geometrical patterns. Let another squ process con If side of ori Answer the (i) What is th ii) Find the a (iii) Find the (iii) Find the	ginal square following: he side of s area of square e Perimeter	e is 100 cm. quare A'B'C'D are A'B'C'D". of square A'E eas of squares	ttern. The m nose sides ar rn looks like.	Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr C	e formation of f whose sides ned to form a C B' B	of designs of are again jo nother squa	different ined to form re and the	1 1 2

37.	A satellite dish has a shape called a paraboloid, where each cross section is parabola. Since radio signals (parallel to axis) will bounce off the surface of the dish to the focus, the receiver should be placed at the focus. The dish is 12 ft across, and 4.5 ft deep at the vertex. $I = \left(\begin{array}{c} \hline & & \\ &$	1
	 me the type of curve given in the above paragraph and find the equation of curve? ii. Find the equation of parabola whose vertex is (3, 4) and focus is (5, 4). iii. Find the equation of parabola Vertex (0, 0) passing through (2, 3) and axis is along x-axis. and also find the length of latus rectum. 	1 1 2
	Find focus, length of latus rectum and equation of directrix of the parabola $x^2 = 8y$.	
38.	Khushali is writing examination. She is reading question paper during reading time. She reads instructions carefully. While reading instructions, she observed that the question paper consists of 15 quetions divided in to two parts – part I containing 8 questions and part II containing 7 questions.	2+2
	(i)If Khushali is required to attempt 8 questions in all selecting at least 3 from each part, then in how many ways can she select these questions?(ii)If Khushali is required to attempt 8 questions in all selecting 3 from I part, then in how many ways can she select these questions?	