Directorate of Education, GNCT of Delhi PRACTICE PAPER (MID TERM)

(2025-26)

Class - XI

Mathematics (Code: 041)

Time: 3 hours Maximum Marks: 80

General Instructions:

- **1.** This Question paper contains **five sections A**,**B**,**C**,**D**,**E**. Each section is compulsory. However, there are internal choices in some questions.
- **Section A** has 18 **MCQ's and 02** Assertion-Reason based questions of 1 mark each.(20 Marks)
- **3. Section B**has 5 **Very Short Answer (VSA)-type** questions of 2 marks each.(10 Marks)
- **4. Section C** has 6 **Short Answer (SA)-type** questions of 3 marks each.(18 Marks)
- **5. Section D** has 4 **Long Answer (LA)-type** questions of 5 marks each.(20 Marks)
- 6. Section E has 3 Source based/Case based/passage based/integrated units of assessment (4 marks each) with sub parts.(12 Marks)

		Section – A	
	Question Number	er 1-18 are of MCQ type question one mark each.	
		Question	
Q. No.			Marks
1.			1
	If there are 4 elements in s	set A, then proper subsets it can have is:	
	(a) 16	(b) 15	
	(c) 17	(d) 18	
2	If A={1,2,3,4,5}, B={3,4,5,6,7} and C=A-B, then which of the following is true?		
	(a) $C=\{1,2\}$	(b) C={1,2,6,7}	
	(c) C={3,4,5}	(d) C={6,7}	

	(a) {0,1,2,3}	(b) {0,1,2,3,4}	
	(c) {-3,-2,-1,1,2,3}	(d) {-3,-2,-1,0, 1,2,3}	
4	Let R be the set of points inside a rectangle of sides a and b (a,b>0) with two sides along the positive direction of x- axis and y-axis. Then		1
	(a) $R = \{(x, y) : 0 \le x \le a, 0 \le y \le b\}$	(b) $R = \{(x, y) : 0 \le x < a, 0 \le y \le b\}$	
	(c) $R = \{(x, y): 0 \le x \le a, 0 < y < b\}$	(d) $R = \{(x,y): 0 < x < a, 0 < y < b\}$	
5	Let n(A)=m and n(B)=n then number from A to B is:	er of non empty relations that can be defined	1
	(a) m ⁿ	(b)n ^m - 1	
	(c) $mn-1$	(d) $2^{mn} - 1$	
6	Which of the following relation is no	ot a function ?	1
	(a) {(1,1), (2,1), (3,1)}	(b) {(1,1), (1,2), (1,3)}	
	(c) {(1,2), (2,3), (3,4)}	(d) {(1,5), (2,4), (3,5)}	
7	Domain of $\sqrt{a^2 - x^2}$ (a>0) is:		1
	(a) (-a,a)	(b [-a,a]	
	(c) [0,a]	(d) (-a,0]	
8	If $f(x) = \frac{9}{5}x + 32$, the value of f(-10) is :		1
	(a) 15	(b)=14	

	If [.] denote the greatest integer fund true?	ction , then which of the following statement i	S
	(a) [x]=x for all real x	(b) [x]=x, only when x is an integer	
	(c) [x]=x+1, if x is not an integer	(d) [x]=x-1, if x is an integer	
10	If $i+i^2+i^3++i^{2025}=a+ib$, then ((a-b) =	1
	(a) -1	(b)0	
	(c) 1	(d) 2	
11	Which of the following complex number is equal to $Z=i^{1+2+3+\dots+2025}$		
	(a) 1+0i	(b) -1+0i	
	(c) 0-i	(d) 0+i	
		I	
12	If $f(z) = \frac{7-z}{1-z^2}$, where $z = 1+2i$, then $ f(z) $ is :		1
	(a) $\frac{ z }{2}$	(b) z	
	(c)2 z	(d) None of these	
13	Which of the following complex number is <u>not</u> purely imaginary ?		1
	(a) i^{2025}	(b) i^{-2025}	
	(c) $(1+i)^4$	(d) $(1+i)^2$	

14	$3\cos 15^{0} - 4\cos^{3} 15^{0} =$		1
	(a) -1	(b) $\frac{-1}{\sqrt{2}}$	
	(c) $\frac{1}{\sqrt{2}}$	(d) 1	
15	Maximum value of sinx.cosx. ls :		1
	(a) 1	(b)2	
	(c) $\sqrt{2}$	(d) $\frac{1}{2}$	
16	If A=2B then $\frac{2 \tan B}{1 + \tan^2 B}$ - sin A =		1
	(a) tan 2A	(b) sin2A	
	(c) cos 2A	(d) 0	
17	$\sin\left(\frac{4\pi}{6}\right) + \cos\left(\frac{5\pi}{3}\right) =$		1
	(a) -1	(b) 0.25	
	(c) 1	(d) O	
18	If $f(x)=p(x)+q$, where p and q are integers , $f(-1)=5$, and $f(3)=3$ then p and q are equals to :		
	(a)p=-3, q=-1	(b)p=2, q=-3	
	(c)p=0, q=-2	(d)p=2, q=3	

	(ASSERTION-REASONING BASED QUESTIONS)	
	In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.	
	(a) Both A and R are true and R is the correct explanation of A.	
	(b) Both A and R are true but R is not the correct explanation of A.	
	(c) A is true but R is false.	
	(d) A is false but R is true.	
19		1
	Assertion (A): The inequality $-4x+3 \ge 7$ is equivalent to $x \le -1$	
	Reason (R) : When we divide or multiply an inequality by a negative number , the inequality sign reverses .	
20	Assertion (A) : If $\sin + \sin b + \sin c = -3$ then $\cos a + \cos b + \cos c = 0$	1
	Reason (R): The sine of any real angle lies from -1 to 1	
	<u>Section B</u> This Section contains 5 Very Short Answer (VSA)-type questions of 2 marks each.	
21		2
	For any two sets A and B prove that $(A \cap B) \cup (A - B) = A$ OR	
	If $A = [x: x \in N]B = [x: x = 2n, n \in N]C = [x: x = 2n - 1, n \in N]$ $D = [x: is a prime natural number]$ Find (a) $(A \cap B)$ (b) $(B \cap C)$	
22	Evaluate $(1+i)^4 + (1-i)^4$	2
	OR	
	If $x+iy = \frac{a+ib}{a-ib}$ Prove that $x^2 + y^2 = 1$	
23	Prove that $\tan(60^{\circ}+\theta)$. $\tan(60^{\circ}-\theta)=\frac{2\cos 2\theta+1}{2\cos 2\theta-1}$	2
24	Prove that $sin(n+1)x.sin(n+2)x + cos(n+1)x.cos(n+2)x = cosx$	2
25	Prove that 1x1!+2x 2!+3x3! ++nxn! =(n+1)!-1	2
	Section C his section contains Six Short Answer (SA) type questions of 3 marks each	
26	his section contains Six Short Answer (SA)-type questions of 3 marks each If A= {3,6,12,15,18,21}, B={4,8,12,16,20} C={2,4,6,8,10,12,14,16} and D={5,10,15,20} Find	3
	(a)A-B (b)B-C (c) B-D	
27	Let $A = \{1, 2, 3, 4, 5, \dots, 20\}$. Define a relation R from A to A by	3
	$R = \{(a,b): a-2b=0, a,b \in A\}$ Depict the relation using roaster form . Write domain and range of the relation.	

If $cotx = \frac{5}{12}$, x lies in the second quadrant. Find the values of other five trigonometric functions OR Show that $\left(\frac{1+\sin\theta}{1-\sin\theta}\right) = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ If $a+ib = \frac{x^2+1}{2x^2+1}$ prove that $a^2+b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$ OR Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ Solve for real x: $\frac{(2x-1)}{3} \geqslant \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3 3 3
Show that $\left(\frac{1+\sin\theta}{1-\sin\theta}\right) = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ 29 If $a+ib = \frac{x^2+1}{2x^2+1}$ prove that $a^2+b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$ OR Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ 30 Solve for real $x: \frac{(2x-1)}{3} \geqslant \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ 31 In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3
Show that $\left(\frac{1+\sin\theta}{1-\sin\theta}\right) = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ If $a+ib = \frac{x^2+1}{2x^2+1}$ prove that $a^2+b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$ OR Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ 30 Solve for real x: $\frac{(2x-1)}{3} \geqslant \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3
Show that $\left(\frac{1+\sin\theta}{1-\sin\theta}\right) = \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ If $a+ib = \frac{x^2+1}{2x^2+1}$ prove that $a^2+b^2 = \frac{\left(x^2+1\right)^2}{\left(2x^2+1\right)^2}$ OR Find the conjugate of $\frac{\left(3-2i\right)\left(2+3i\right)}{\left(1+2i\right)\left(2-i\right)}$ 30 Solve for real $\mathbf{x}: \frac{\left(2x-1\right)}{3} \geqslant \frac{\left(3x-2\right)}{4} - \frac{\left(2-x\right)}{5}$ 31 In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3
Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ Solve for real x: $\frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3
Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ Solve for real x: $\frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	3
Find the conjugate of $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$ Solve for real x: $\frac{(2x-1)}{3} \ge \frac{(3x-2)}{4} - \frac{(2-x)}{5}$ In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	
In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	
In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?	
negative signs occur together?	3
SECTION D	
This section contains four Long Answer (LA)-type questions of 5 marks each.	
Find domain and range of real function $f(x) = \sqrt{x^2 - 16}$ OR	5
Find the domain and range of the function $f(x) = \frac{x^2}{1+x^2}$	
Prove that $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \frac{3}{2}$	5
OR	
If	
$\frac{\cos(A-B)}{\cos(A+B)} + \frac{\cos(C+D)}{\cos(C-D)} = 0$, Prove that tanA. tanB . tanC . tanD =-1	
Three balls are drawn from a bag containing 5 Red , 4 White , and 3 Black balls .Find the	5
number of ways in which this can be done if atleast 2 balls are Red .	
If $(x+iy)^3 = u+iv$ then show that $\frac{u}{x} + \frac{v}{v} = 4(x^2 - y^2)$	5

SECTION E

Source based/Case based/passage based/integrated units of assessment Questions

- A college is organizing a project fair and needs to form 5-member teams from a pool of 8 boys and 5 girls. The project fair has different segments, and each segment has specific team formation rules:
 - 1. Innovation Segment: The team must consist of at least 2 boys and 2 girls.
 - 2. Technology Segment: The team must have exactly 3 boys.
 - 3. Sustainability Segment: The team must have at least 3 girls.

Based on the information given above answer any four questions :

- 1. How many ways can a team of 5-member be formed for **Innovation Segment** with at least 2 boys and 2 girls?
- 2. How many ways can a team of 5-member be formed for **Technology Segment** with exactly 3 boys?
- 3. (a) How many ways can a a team of 5-member be formed for **Sustainability Segment** with at least 3 girls?

(b)If the team size is increased to 6 members in how many ways can a team be formed with exactly 3 boys .

A small box contains coins of paisa denomination from 1 paisa to 20 paisa. Consider two sets: Set X = {1, 5, 10, 15} (coins of denominations 1 paisa, 5 paise, 10 paise, and 15 paise) Set Y = {5, 10, 15, 20} (coins of denominations 5 paise, 10 paise, 15 paise, and 20 paise)

Based on situation given above answer the following questions:

1. Find the union of Set X and Set Y (X \cup Y).

37

- 2. Find the intersection of Set X and Set Y $(X \cap Y)$.
- 3. Determine the subset of coins that are common to both sets. OR
- 4. write the smallest and largest subset of xUy

1

1

1

2

1

A company produces certain items: Manager in the company used to make a data record on daily basis about the cost and revenue of those items separately. The cost and revenue function of the product

are given by .C(x)=20X+4000 and R(x)=60x+2000 respectively where X is the number of Items produced and sold . The company manager has few questions in mind , help him to solve them.

(I) How many items must be sold to realize some profit?

(ii) If the cost and revenue functions of the product are given by

C(X)=2x+400

R(X)=6x+20 respectively , Where X is the number of items produced by the manufacturer. Calculate the Minimum numbers of items that the manufacturer must sell to realize some profit .

2

2