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 SECTION – A 
  

Q.NO. CORRECT 
OPTION 

HINT/MAIN POINTS MARKS 
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2. (d) 
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3. (a) Not Reflexive as (c,c) R, 
By definition, R is symmetric as well as Transitive  
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4. (b) As (2, 2) R, so R is not Reflexive 
As (2, 3) ɛ R, (3, 2) ɛ R  but (2, 2) R, so R is not Transitive 
 
By definition, R is symmetric.   
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5.  (d)  As, |adj A| = |A|2 =  265,  so |A| = 16 or – 16 
Thus, the sum of all possible values of |A| is zero. 
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6. (d) 
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On Comparing, y = - 5, x = 2, so x + y = - 3    
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7. (b) 2
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So, a = 0 or – 1, similarly b and c can take 2 values (0 and -1) 
Thus, total number of possible matrices are 2 x 2 x 2 = 8  
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8. (d)  
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9. (c) As, (A - AT )T = - (A – AT)            
So, (A – AT) is not Symmetric matrix,   
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10. (d) |2AT| = 23|AT| = 8 |A| = 24   
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11. (d) 
 =

a b c a b c
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dy
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12. (c) By definition, 3 x 5 = a x b = c x d, thus a = c = 3 and b = d = 5 
Thus, ac + bd = 9 + 25 = 34 
 

 
1 

13. (a) Continuous function as LHL = RHL = f(4) = 11 
But not differentiable as LHD ≠ RHD (LHD = 2, RHD = 8) 
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14. (c) If 3 2 33 2021x x y y xy      then 
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15. (d) y = x3 ⇒ Slope of tangent = 3x2 at the point (2, 8)  
Slope of tangent at the point (2, 8) is 3(4) = 12 
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16. (b) Z at (3, 0) = 3p, Z at (1, 1) = p + q  
As Z is minimum at both the points so 3p = p + q ⇒ 2p = q  
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17. (b) 4
8 18 0 0

9

dy dy x
x y

dx dx y


      

Thus, x = 0, so 0 + 9y2 = 36 ⇒ y = ±2  
Point on the curve is (0, ±2)             
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18. (b) 
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19. (d) 2
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20. (d) 2 2

2

2

3cos .( sin ), 3sin .(cos )

3cos .sin
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dy dx
t t t t
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dy t t
t
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SECTION – B 

  
21. (b) 

 
1 1 1 1 2

cos cos (sin sin )
3 3

x y x y
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22. (a) As f(x) = f(y) ⇒ x = y, so f(x) is one-one function 
And as range of f is R = co-domain, so f is onto function 
 
Alternative method: Graph of f(x) is a line which is strictly 
increasing for all values of x, so its on-one function and 
Range of f(x) is R which is equal to R so oto function. 
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23. (c) ,As a  ,  R is not reflexive

,  does not implies b > a, So R is not symmetric

   ,   ,So R is Transitive

a So

As a b

As a b b c a c


   
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24. (a) 
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25. (b) 
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26. (d) A2 = A.A = AB.A = A.B = A 
B2 = BB = BA.B = B.A = B 
(A + B)(A – B) = A2 + BA – AB – B2 = A + B – A – B = 0
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27. (d)  5x + 5y = 5x+y ⇒5 – y  + 5 – x  = 1   

 (5 log5) (5 log5) 0 5y x y xdy dy

dx dx
          
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28. (b)  f ‘(x) = 6x2 – 6x – 36 = 6(x – 3)(x + 2) 
Thus, f(x) is decreasing in (- 2, 3) 
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29 (d) As curves cut orthogonally at (1,1), so (1,1) must satisfy  
ay + x2 = 7. Thus a(1) + 1 = 7 ⇒ a = 6  
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30. (a) 
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31. (a) By definition of area of triangle, |-3(-k)+3(k)|=18  
k = ±3 
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32. (d) 6
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33. (b) 1
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34. (b) As, 2A2 + A = I, on pre-multiplying by A – 1, we get 
2A + I = A – 1   
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35. (a)  Since f(x) = 2sin 2x, Value of sin 2x lies between – 1 to 1, 
so maximum value of f(x) is 2  
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36. (c) At (1, 4), 13 = a(1) + 4 ⇒ a = 9  
1 

37.  (b) As, (L1,L1) R (Every line coincides at all points with itself) 
So, R is not Reflexive. 
As, (L1,L2) ɛ R implies (L2,L1) ɛ R, So, R is Symmetric. 
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As, (L1,L2) ɛ R, (
not Transitive. (
L3 intersect by a line

38. (c) As for 3 and 4 from set X we have same image c in set Y, 
so f is not one
pre-image in set X, so f is not onto function.

39. (a)  The feasible region for an LPP is always a 
 
(In general, the feasible region of a Linear Programming 
Problem (LPP) is the intersection of the half
are defined by the 
can conclude that the 
convex polygon)

40. (b) y ' = ex , slope of tangent at 
Thus, equation of tangent is y 
x-axis at x = -1, so the required point is 

41. (a) From the graph, 

42. (b) For f(x) = cos x, f’ (x) = 

So, cos x is decreasing function on 

43. (d) f ‘ (x) = cos x –
 a ɛ [1, ∞) because cos x 

44. (c) In a linear programming problem, 
bounded then objective function Z = px + qy has 
Maximum and minimum value both

45. (d) 6 8

3 2

x
A A x x

 
       
 

46. (c) 2 2,  48  (16) . ,16 3
C

kv so k Thus k
t
  

(L2,L3) ɛ R  does not implies (L1,L3) ɛ R, So, R is 
not Transitive. (For example In case of two parallel line

by a line L2) 
As for 3 and 4 from set X we have same image c in set Y, 
so f is not one-one function. Further element d has no 

image in set X, so f is not onto function.  
The feasible region for an LPP is always a convex polygon

In general, the feasible region of a Linear Programming 
Problem (LPP) is the intersection of the half-spaces which 
are defined by the hyper planes. From this observation, we 
can conclude that the feasible region of an LPP is always a 
convex polygon) 

, slope of tangent at (0, 1) = 1 
Thus, equation of tangent is y – 1 = x which intersect the 

1, so the required point is ( - 1, 0)                
 

SECTION – C 
From the graph, The feasible region lies in First Quadrant

 
or f(x) = cos x, f’ (x) = - sin x which is negative on (0,

is decreasing function on (0,
2

 ) 

– a, so f (x) is decreasing on x ɛ R, when 
) because cos x ≤ 1                 

In a linear programming problem, If the feasible region is 
bounded then objective function Z = px + qy has  
Maximum and minimum value both. 

6 8
| | 12 24 0 2

3 2
A A x x
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2 2,  48  (16) . ,16 3kv so k Thus k    

So, R is 
parallel lines L1, 

As for 3 and 4 from set X we have same image c in set Y, 
one function. Further element d has no 

 
1 

polygon 

In general, the feasible region of a Linear Programming 
paces which 

From this observation, we 
PP is always a 
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1 = x which intersect the 
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First Quadrant  
1 

(0,
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 )   
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when   
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If the feasible region is  
1 
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47. (d) 
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48. (b) 
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49. (a) The fuel cost (In Rs.)for the train to travel 1000km at the 

most economical speed is 
375 375

(80) 15000
2 2

C v       
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50. (b) The total cost of the train to travel 1000km at the most 
economical speed is 
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2 80

30000
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