

CHAPTER-WISE QUESTION BANK
CLASS-X
SUBJECT-MATHEMATICS BASIC (241)

NOTE: Suggestive Value Points are provided with each question for answer formulation.

Chapter 1–Real Numbers

Value Point	<p>The numbers are given by the difference exactly divisible by the required number are given as:</p> $285 - 9 = 276 \text{ and } 1249 - 7 = 1242$ <p>To find the greatest number that exactly divides these are given by their H.C.F:</p> $276 = 2 \times 2 \times 3 \times 23$ $1242 = 2 \times 3 \times 3 \times 3 \times 23$ $\text{H.C.F.} = 138$ <p>Therefore, the greatest number which divides 285 and 1249 leaving the remainder 9 and 7 respectively is 138.</p>	
	3-MARKS QUESTIONS	
7.	<p>Prove that $\sqrt{3}$ is an irrational number.</p>	
Value Point	<p>Let's assume $\sqrt{3}$ is a rational number of the form of p/q where p and q are co-prime integers and $q \neq 0$.</p> $\Rightarrow \sqrt{3} = p/q$ $\Rightarrow \sqrt{3}q = p \quad (1)$ $\Rightarrow 3q^2 = p^2$ <p>$\because 3$ is a prime number that divides p^2, so 3 divides p.</p> $\Rightarrow 3 \text{ is a factor of } p.$ <p>Let $p = 3a$ where a is a whole number.</p> <p>Substitute the value of p in equation (1)</p> $\Rightarrow 3q^2 = (3a)^2$ $\Rightarrow 3q^2 = 9a^2$ $\Rightarrow q^2 = 3a^2$ $\Rightarrow q^2/3 = a^2 \quad (2)$ <p>$\because 3$ is a prime number that divides q^2, so 3 divides q.</p> $\Rightarrow 3 \text{ is a factor of } q.$ <p>From equation (1) and (2), we can conclude that 3 is a factor of both p and q.</p> <p>This leads to the contradiction to our assumption that p and q are co-primes</p> <p>Hence, $\sqrt{3}$ is an irrational number.</p>	
8.	<p>Prove that $\sqrt{5}$ is an irrational number.</p>	
Value Point	<p>Please refer to Q. 7 and proceed accordingly.</p>	
9.	<p>Prove that $\sqrt{2}$ is an irrational number.</p>	
Value Point	<p>Please refer to Q. 7 and proceed accordingly.</p>	
	4-MARKS QUESTIONS	
10.	<p>A Mathematics exhibition is being conducted in your school and one of your friends is making a model of a 'factor tree'. He has some difficulty and asks for your help in completing a quiz for the audience.</p> <p>Observe the following 'factor tree' and answer the following questions:</p>	Comptt.

(i) What is the value of a? **1**
 (ii) (a) What is the value of b? **2**

OR

(b) What is the value of c?
 (iii) Write the prime factorization of 24115. **1**

**Value
Point**

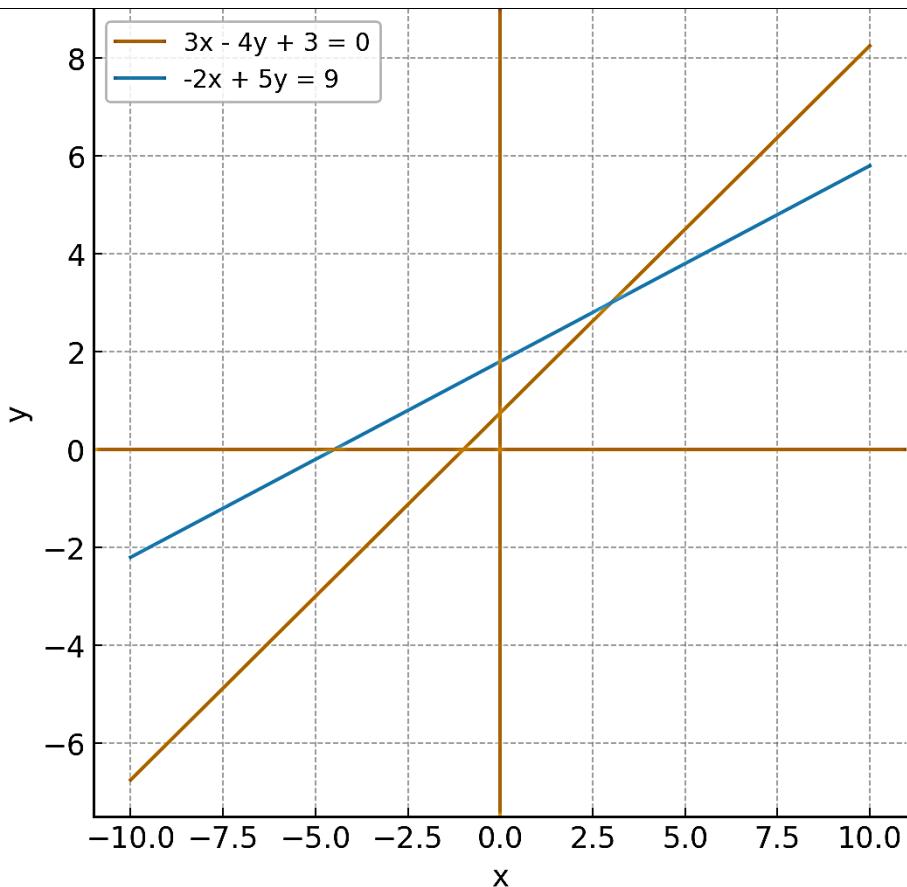
(i) 24115
 (ii) (a) 13
 (iii) (b) 53
 (iv) $24115 = 5 \times 13 \times 7 \times 53$

OR

Chapter 2–Polynomials

1-MARK QUESTIONS		
1.	<p>One of the zeroes of the polynomial $p(x) = kx^2 - 9x + 3$ is $\left(-\frac{3}{2}\right)$. The value of k is:</p> <p>(A) $\frac{22}{3}$ (B) $-\frac{14}{3}$ (C) $\frac{14}{3}$ (D) $-\frac{22}{3}$</p>	
Appropriate Option	(D) $-\frac{22}{3}$	
2.	<p>α, β are the zeroes of the polynomial $2x^2 + 5x + 1$. The value of $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ is:</p> <p>(A) $-\frac{5}{4}$ (B) 5 (C) $\frac{5}{4}$ (D) -5</p>	
Appropriate Option	(D) -5	
3.	<p>If α, β are the zeroes of the polynomial $3x^2 + 14x - 5$, then the value of $3\left(\frac{\alpha+\beta}{\alpha\beta}\right)$ is:</p> <p>(A) $\frac{14}{5}$ (B) $\frac{42}{5}$ (C) $-\frac{14}{5}$ (D) $-\frac{42}{5}$</p>	
Appropriate Option	(D) $-\frac{42}{5}$	
4.	<p>If α, β are the zeroes of the polynomial $p(x) = 2x^2 + 6x - 6$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to:</p> <p>(A) -1 (B) 1 (C) -3 (D) 3</p>	Comptt.
Appropriate Option	(B) 1	
5.	<p>If α, β are the zeroes of the polynomial $p(x) = x^2 + 3x + 2$, then the value of $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ is equal to:</p> <p>(A) $-\frac{3}{2}$ (B) $\frac{3}{2}$ (C) -1 (D) 1</p>	Comptt.

Appropriate Option	(B) $-\frac{1}{4}$	
2-MARKS QUESTIONS		
11.	<p>Find the zeroes of the polynomial $7y^2 - \frac{11}{3}y - \frac{2}{3}$.</p> <p style="text-align: center;">OR</p> <p>Find a quadratic polynomial in x, whose one zero is 15 and sum of the zeroes is 42.</p>	Comptt.
Value Point	$7y^2 - \frac{11}{3}y - \frac{2}{3} = 0$ $21y^2 - 11y - 2 = 0$ $(3y-2)(7y+1) = 0$ $y = 2/3, -1/7$ <p style="text-align: center;">OR</p> <p>The other zero is $= 42 - 15 = 27$</p> <p>A quadratic polynomial in x with zeroes 15 and 27 is:</p> $x^2 - (\alpha+\beta)x + \alpha\beta = x^2 - 42x + 405$	
12.	<p>Find the zeroes of the polynomial $p(x) = x^2 + \frac{1}{6}x - 2$.</p> <p style="text-align: center;">OR</p> <p>Find a quadratic polynomial whose one zero is 4 and product of zeroes is -20.</p>	Comptt.
Value Point	$p(x) = x^2 + \frac{1}{6}x - 2$ $6x^2 + x - 12$ $6x^2 + 9x - 8x - 12$ $3x(2x + 3) - 2(2x + 3)$ $x = 2/3, -3/2$ <p style="text-align: center;">OR</p> <p>The other zero is $= -20 \div 4 = -5$</p> <p>A quadratic polynomial in x with zeroes 4 and -5 is:</p> $x^2 - (\alpha+\beta)x + \alpha\beta = x^2 + x - 20$	
3-MARKS QUESTIONS		
13.	Find the zeroes of the polynomial $p(x) = 6x^2 + 13x - 5$ and verify the relationship between its zeroes and the coefficients.	
Value Point	$(3x-1)(2x+5)=0$ $x = 1/3, -5/2$ <p>Verification:</p>	


	$\text{Sum of zeroes} = \frac{1}{3} + \left(-\frac{5}{2}\right) = -\frac{13}{6} = -\frac{b}{a}$ $\text{Product of zeroes} = \frac{1}{3} \times \left(-\frac{5}{2}\right) = -\frac{5}{6} = \frac{c}{a}$	
14.	Find the zeroes of the polynomial $p(x) = 4x^2 - 4x - 3$ and verify the relationship between its zeroes and the coefficients.	
Value Point	Please refer to Q. No. 13 and proceed accordingly.	
15.	Find the zeroes of the polynomial $p(x) = 9x^2 - 6x - 35$ and verify the relationship between its zeroes and the coefficients.	
Value Point	Please refer to Q. No. 13 and proceed accordingly.	

Chapter 3–Pair of Linear Equations in Two Variables

1-MARK QUESTIONS	
1.	<p>The value of m for which lines $14x + my = 20$ and $-3x + 2y = 16$ are parallel, is:</p> <p>(A) $-\frac{3}{14}$ (B) $-\frac{7}{3}$ (C) $-\frac{28}{3}$ (D) $-\frac{3}{28}$</p>
Appropriate Option	(C) $-\frac{28}{3}$
2.	<p>The solution of the pair of the linear equations $3x + 4y = 5$; $4x + 3y = 9$ is:</p> <p>(A) $x = -3, y = 1$ (B) $x = 3, y = 1$ (C) $x = 3, y = -1$ (D) $x = -3, y = -1$</p>
Appropriate Option	(C) $x = 3, y = -1$
3.	<p>The pair of equations $7x - 14y = -7$ and $3x - 6y = 21$ has:</p> <p>(A) unique solution (B) two solutions (C) no solution (D) infinitely many solutions</p>
Appropriate Option	(C) no solution
2-MARKS QUESTIONS	
4.	<p>Solve the following system of linear equations for x and y:</p> $\begin{aligned} 3x + 2y &= 11 \\ 2x + 3y &= 4 \end{aligned}$
Value Point	$\begin{aligned} 3x + 2y &= 11 & (1) \\ 2x + 3y &= 4 & (2) \end{aligned}$ <p>Multiply the first equation by 3 and the second by 2:</p> $\begin{aligned} 9x + 6y &= 33 & (3) \\ 4x + 6y &= 8 & (4) \end{aligned}$ <p>Subtracting equation (4) from equation (3), we get</p> $x = 5, y = -2$
3-MARKS QUESTIONS	
5.	<p>Solve the following pair of linear equations:</p> $\frac{x}{a} - \frac{y}{b} = 1; ax + by = a^2 + b^2$ <p style="text-align: center;">OR</p> <p>For what value of 'p' will the following system of linear equations have no solution?</p> $\begin{aligned} (2p - 1)x + (p - 1)y &= 2p + 1 \\ 3x + y &= 1 \end{aligned}$

4-MARKS QUESTIONS

11.

A telecommunication company came up with two plans- plan A and plan B for its customers.

The plans are represented by linear equations where 't' represents the time (in minutes) bought and 'C' represents the cost. The equations are:

$$\text{Plan A: } 3C = 20t$$

$$\text{Plan B: } 3C = 10t + 300$$

Based on above information, answer the following questions:

(i) If you purchase plan B, how much initial amount you have to pay? 1

(ii) Charu purchased plan A. How many minutes she bought for 250? 1

(iii) (a) At how many minutes, do both the plans charge the same amount? What is that amount? 2

OR

(iii) (b) Which plan is better if you want to buy 60 minutes? Give reason for your answer. 2

Value Point

(i) The initial amount (fixed cost) is the cost when the time used (t) is 0 minutes. For Plan B, we substitute (t=0) into the equation, we get $C = 100$.

(ii) For Plan A, we are given the cost ($C=250$). Putting $C = 250$ in the first equation and solving for t, we get $t = 37.5$

(iii) (a) Equating both the equation we get: $20t = 10t + 300 \Rightarrow t = 30$

For plan A, when $t = 30$, $C = 200$

For plan B, when $t = 30$, $C = 200$

OR

(iii) (b) For plan A, when $t = 60$, $C = 400$

For plan B, when $t = 60$, $C = 300$

	Therefore, plan B is cheaper.	
--	-------------------------------	--

Chapter 4—Quadratic Equations

	3-MARKS QUESTIONS	
7.	The sum of the squares of two consecutive even numbers is 452. Find the numbers.	
Value Point	<p>Let the two consecutive even numbers be: $x, x+2$</p> <p>According to the question:</p> $x^2 + (x+2)^2 = 452$ $(x+16)(x-14)=0$ <p>So, $x = 14$ or $x = -16$ (Reject)</p> <p>Numbers are 14 and 16</p>	
	5-MARKS QUESTIONS	
8.	<p>(A) It is given that $p^2x^2 + (p^2 - q^2)x - q^2 = 0$; ($p \neq 0$)</p> <p>Show that the discriminant (D) of above equation is a perfect square.</p> <p>Find the roots of the equation.</p> <p style="text-align: center;">OR</p> <p>(B) Three consecutive positive integers are such that the sum of the square of smallest and product of other two is 67. Find the numbers, using quadratic equation.</p>	
Value Point	<p>(A) $D = (p^2 - q^2)^2 - 4(p^2)(-q^2)$</p> $D = p^2 + 2p^2q^2 + q^2$ <p>This expression can be factored as a perfect square trinomial:</p> $D = (p^2 + q^2)^2$ <p>Since D can be expressed as the square of $(p^2 + q^2)$, the discriminant of the given equation is a perfect square.</p> <p>Using quadratic formula, roots of the given equation are $\frac{q^2}{p^2}, -1$</p> <p>(B) Let the three consecutive positive integers be $x, x + 1$, and $x + 2$.</p> $x^2 + (x + 1)(x + 2) = 67$ $2x^2 + 3x - 65 = 0$ <p>Solving this equation, we get $x = 5$ or $x = -6.5$ (reject)</p> <p>Therefore, the numbers are 5, 6 and 7.</p>	
9.	<p>(a) In a class test, the sum of marks obtained by Ananya in Mathematics and Science is 28. Had she got 3 marks more in Mathematics and 4 marks less in Science, the product of marks obtained in the two subjects would have been 180. Find the marks obtained in the two subjects separately.</p> <p style="text-align: center;">OR</p> <p>(b) Solve for x:</p> $\frac{150}{x} + x + 18 = 10x + \frac{15}{x}; x \neq 0$	Comptt.
Value Point	<p>(a) Let marks obtained in Mathematics = x and in Science = y.</p> <p>Given $x + y = 28$ and $(x+3)(y - 4) = 180$.</p> $(x + 3)(24 - x) = 180.$	

$$-x^2 + 21x + 72 = 180$$

$$(x-12)(x-9) = 0$$

$$x = 12 \text{ or } x = 9.$$

Then $y = 16$ or $y = 19$.

Answers: (Maths, Science) = (12, 16) or (9, 19).

$$(b) \frac{150}{x} + x + 18 = 10x + \frac{15}{x}; x \neq 0$$

$$-9x^2 + 18x + 135 = 0$$

$$(x-5)(x+3)=0$$

$$x = 5 \text{ or } x = -3$$

10.

(a) A 2-digit number is such that the product of digits is 8. When 18 is subtracted from the number, the digits interchange their places. Find the number.

OR

(b) The difference of squares of two numbers is 180. The square of the smaller number is 8 times the greater number. Find the two numbers.

**Value
Point**

(a) Let the two-digit number be $10x + y$, where x = tens digit, y = units digit.

$$\text{Given: } xy = 8 \text{ and } 10x + y - 18 = 10y + x$$

Solving the equations:

$$x = 4 \text{ and } y = 2$$

So, the number is 42.

OR

(b) Let the larger number = x and smaller number = y

$$\text{Given: } x^2 - y^2 = 180 \text{ and } y^2 = 8x$$

Solving the equations:

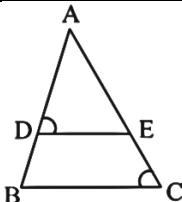
$$x = 18 \text{ and } y = 12$$

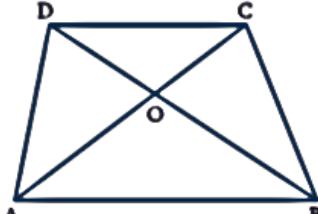
Chapter 5–Arithmetic Progressions

8.	The 20 th term of the A.P. - 4, - 7, - 10, - 13, ... is: (A) 53 (B) 56 (C) -61 (D) -64	Comptt.
Appropriate Option	(C) -61	
9.	The next term of the A.P. $\sqrt{7}, \sqrt{28}, \sqrt{63}, \dots$ is: (A) $\sqrt{81}$ (B) $\sqrt{126}$ (C) $\sqrt{112}$ (D) $5\sqrt{7}$	Comptt.
3-MARKS QUESTIONS		
10.	(A) Find the sum of the A.P. 7, $10\frac{1}{2}$, 14, ..., 84. OR (B) If the sum of the first n terms of an A.P. is given by $S_n = \frac{n}{2}(2n + 8)$. Then, find its first term and common difference. Hence, find its 15 th term.	
Value Point	(A) In the given AP, first term = 7 and common difference = 3.5 and nth term = 84. Using the formula for nth term, we get $n = 23$ Now, $S_{23} = 1046.5$ OR (B) $S_n = \frac{n}{2}(2n + 8) = n(n + 4)$ $a_1 = 5, d = 4, a_{15} = 33$	
11.	Find the middle term(s) of the A.P. 9, 15, 21, ..., 243.	For visually impaired candidates
Value Point	Find n using the nth term formula, we get $n = 40$ So, middle terms are 20 th and 21 st terms. $a_{20} = 123$ and $a_{21} = 129$	
4-MARKS QUESTIONS		
12.	In a charming village, there is a street called 'Maplewood Avenue', where the houses are numbered from 1 to 49. A community group has decided to undertake a green renovation project, aiming to install solar panels on the houses. They have a few questions before they begin the project.	Comptt.

(i) How many houses are there on 'Maplewood Avenue'? **1**

(ii) The house numbers follow an Arithmetic Progression. What is the first term of the A.P. and the common difference? **1**


(iii) (a) If the group wanted to calculate the sum of all house numbers from 1 to 49, how much would that be? **2**


OR

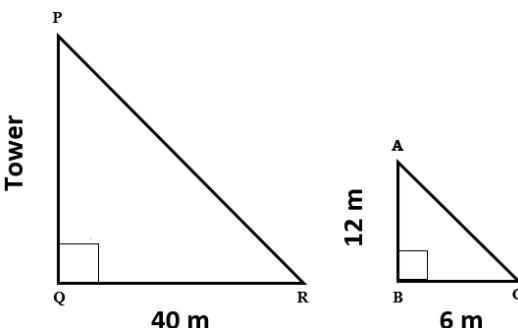
(b) What is the sum of the house numbers between 15 and 30? **2**

Value Point	(i) 49 (ii) First term = 1, common difference = 1 (iii) (a) $S_{49} = 1225$ OR (iv) (b) First term = 15, last term = 30, $n = 16$ $S = \frac{n}{2}(a + l) = 360$
--------------------	--

Chapter 6 – Triangles

5.	<p>In the given figure, in $\triangle PQR$, $ST \parallel QR$. If $PS = 16$ mm and $PQ = 40$ mm, then $PT : TR$ is:</p> <p>(A) 2 : 3 (B) 3 : 2 (C) 2 : 5 (D) 5 : 2</p>	Comptt.
Appropriate Option	(A) 2 : 3	
6.	<p>Which of the following is an incorrect statement?</p> <p>(A) Two congruent triangles are also similar. (B) A square and a rhombus are not similar. (C) Two triangles are similar if their corresponding sides are proportional. (D) Two polygons are similar if and only if their corresponding sides are in proportion.</p>	Comptt.
Appropriate Option	(D) Two polygons are similar if and only if their corresponding sides are in proportion.	
7.	<p>There is one Assertion (A) and one Reason (R). Choose the correct answer of these questions from the four options (A), (B), (C) and (D) given below:</p> <p>(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of the assertion (A). (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.</p> <p>Assesrtion (A): If two triangles are equiangular, then they are similar. Reason (R): If two triangles are similar, then they are congruent.</p>	Comptt.
Appropriate Option	(c) Assertion (A) is true but reason (R) is false.	
2-MARKS QUESTIONS		
8.	<p>In the given figure $\angle ADE = \angle ACB$ and $\frac{AD}{DB} = \frac{AE}{EC}$. Prove that $\triangle ABC$ is an isosceles triangle.</p>	
Value Point	$\frac{AD}{DB} = \frac{AE}{EC}$ <p>By converse of BPT, $DE \parallel BC$</p> <p>$\angle ADE = \angle ABC$ (corresponding angles)</p> <p>$\angle ADE = \angle ACB$ (given)</p> <p>$\angle ABC = \angle ACB$</p> <p>$AB = BC$ (sides opposite to equal angles)</p> <p>Hence proved.</p>	

9.	<p>(a) Prove that diagonals of a trapezium divide each other proportionally.</p> <p style="text-align: center;">OR</p> <p>(b) S is a point on the side QR of a $\triangle PQR$ such that $\angle PSR = \angle QPR$. Prove that $PR^2 = QR \times SR$.</p>	For visually impaired candidates
Value Point	<p>(a) In trapezium ABCD, $AB \parallel CD$. Diagonals AC and BD meet at O.</p> <p>$\angle AOB = \angle COD$ (vertical angles)</p> <p>$\angle ABO = \angle CDO$ (alternate interior angles)</p> <p>So, $\triangle AOB \sim \triangle COD$ (AA similarity)</p> <p>Therefore, corresponding sides are proportional:</p> $\frac{OA}{OB} = \frac{OC}{OD}$ <p>(b)</p>	
	5-MARKS QUESTIONS	
10.	<p>(A) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then prove that the other two sides are divided in the same ratio.</p> <p style="text-align: center;">OR</p> <p>(B) In a $\triangle ABC$, P and Q are points on AB and AC respectively such that $PQ \parallel BC$. Prove that the median AD, drawn from A to BC, bisects PQ.</p>	
Value Point	<p>(A) Given: In triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively (see Fig.).</p> <p>To prove: $\frac{AD}{DB} = \frac{AE}{EC}$</p> <p>Construction: Let us join BE and CD and then draw DM \perp AC and EN \perp AB.</p> <p>Proof: $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{AD}{DB} \quad (1)$</p> $\frac{ar(\Delta ADE)}{ar(\Delta CDE)} = \frac{AE}{EC} \quad (2)$ <p>ΔBDE and ΔDEC are on the same base DE and between the same parallels BC and DE.</p> <p>So, $ar(\Delta BDE) = ar(\Delta DEC) \quad (3)$</p> <p>From (1), (2) and (3) we have</p> $\frac{AD}{DB} = \frac{AE}{EC}$ <p>Hence proved.</p>	
11.	<p>Raghu is trying to find the height of a tower near his house, using the properties of similar triangles. The height of Raghu's house is 12 m. When Raghu's house casts a shadow 6 m long on the ground, the tower casts a shadow 40 m long on the ground. At the same time, the house of his friend Ramesh casts 12 m long shadow on the ground.</p>	


Based on the above information, answer the following:

- What is the height of the tower?
- What is the height of Ramesh's house?
- (a) When the tower casts a shadow of 60 m long, what will be the length of shadow of Ramesh's house?

OR

- (b) When the tower casts a shadow of 48 m long, what will be the length of shadow of Raghu's house?

Value Point

- Clearly, $\triangle PQR \sim \triangle ABC$ (AA similarity)

$$\frac{PQ}{AB} = \frac{QR}{BC}$$

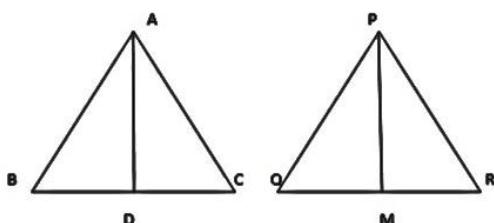
$$\Rightarrow PQ = 80$$

Therefore, the height of the tower is 80 meters.

- Similarly, height of Ramesh's house is 24 meters.
- (a) Given: Length of tower's shadow = 60 m (QR)

$$\frac{80}{24} = \frac{60}{x}$$

$$\Rightarrow x = 18 \text{ m}$$


- (b) $\frac{80}{12} = \frac{48}{y}$
 $\Rightarrow y = 7.2 \text{ m}$

12.

If AD and PM are medians of triangles ABC and PQR respectively, where $\triangle ABC \sim \triangle PQR$, then prove that $\frac{AB}{PQ} = \frac{AD}{PM}$.

Comptt.

Value Point

$\triangle ABC \sim \triangle PQR$ (Given)

Therefore, $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$ and $\angle A = \angle P, \angle B = \angle Q, \angle C = \angle R$

$\frac{AB}{PQ} = \frac{2BD}{2QM}$ (as AD and PM are the medians)

$\frac{AB}{PQ} = \frac{BD}{QM} \dots \dots \dots (1)$

In $\triangle ABD$ and $\triangle PQM$

$\angle B = \angle Q$

$\frac{AB}{PQ} = \frac{BD}{QM}$ (from (1))

Therefore, $\triangle ABD \sim \triangle PQM$ (SAS similarity rule)

So,
$$\frac{AB}{PQ} = \frac{AD}{PM}$$
 (cpst)

Hence proved.

Chapter 7–Coordinate Geometry

1-MARK QUESTIONS		
1.	The distance between the points $(-6, 9)$ and $(2, 7)$ is: (A) $2\sqrt{17}$ (B) $4\sqrt{17}$ (C) $2\sqrt{5}$ (D) $2\sqrt{15}$	
Appropriate Option	(A) $2\sqrt{17}$	
2.	The distance between the points $(2, -7)$ and $(-2, -1)$ is: (A) 10 (B) $2\sqrt{13}$ (C) 8 (D) $4\sqrt{13}$	
Appropriate Option	(B) $2\sqrt{13}$	
3.	The distance of point $P(3, 4)$ from the x -axis is: (A) 3 units (B) 4 units (C) 5 units (D) 7 units	For visually impaired candidates
Appropriate Option	(B) 4 units	
4.	The ratio in which the line segment joining the points $A(-4, 8)$ and $B(5, -10)$ is divided by the point $P(-2, 4)$ is: (A) $1 : 3$ (B) $3 : 4$ (C) $2 : 7$ (D) $2 : 5$	For visually impaired candidates
Appropriate Option	(C) $2 : 7$	
5.	If the point $(3, \frac{3}{4})$ is the mid-point of the line segment joining the points $(k, 0)$ and $(7, \frac{3}{2})$, then the value of 'k' is: (A) -1 (B) 1 (C) $\frac{3}{2}$ (D) 5	Comptt.
Appropriate Option	(A) -1	
6.	If $(\frac{1}{2}, 6)$ is the mid-point of the line segment joining $(-5, k)$ and $(6, 3)$, then the value of 'k' is: (A) 0 (B) 3 (C) $\frac{9}{2}$ (D) 9	Comptt.
Appropriate Option	(D) 9	

	2-MARKS QUESTIONS	
7.	Point P($x, 0$) divides the line segment joining the points (2, 8), and (-3, -5) in a certain ratio. Find the ratio and hence find the value of x .	
Value Point	<p>Let P divide AB in the ratio m : n.</p> <p>Using the section formula for the y-coordinate, we have</p> $\frac{m(-5) + n(8)}{m + n} = 0$ $\frac{m}{n} = \frac{8}{5}$ <p>Ratio</p> $m : n = 8 : 5$ <p>Using the section formula for the x-coordinate, we have</p> $\frac{8(-3) + 5(2)}{8 + 5} = x$ $-\frac{14}{13} = x$ <p>So, the required point is $(-\frac{14}{13}, 0)$</p>	
8.	Find the ratio in which point P(-1, m) divides the line segment joining the points A(2, 5) and B(-5, -2). Hence, find the value of m .	
Value Point	<p>Let P divide AB in the ratio k : 1</p> <p>Using section formula for x-coordinate, we have</p> $\frac{k(-5) + 2}{k + 1} = -1$ $\frac{3}{4} = k$ <p>So, AP : PB = 3 : 4</p> <p>Using section formula for y-coordinate, we have</p> $\frac{\frac{3}{4}(-2) + 5}{\frac{3}{4} + 1} = m$ $2 = m$	
9.	Find the ratio in which the segment joining the points (2, -5) and (5, 3) is divided by x -axis. Also, find coordinates of the point on x -axis.	
Value Point	<p>Let P divide AB in the ratio m : n.</p> <p>Using the section formula for the y-coordinate, we have</p>	

$$\frac{m(3) + n(-5)}{m + n} = 0$$

$$\frac{m}{n} = \frac{5}{3}$$

Ratio

$$m : n = 5 : 3$$

Using the section formula for the x-coordinate, we have

$$\frac{5(5) + 3(2)}{5 + 3} = x$$

$$\frac{31}{8} = x$$

So, the required point is $(\frac{31}{8}, 0)$

	<p>10. (a) Find the coordinates of the point which divides the join of $(-1, 7)$ and $(4, -3)$ in the ratio $2 : 3$.</p>	Comptt.
	<p>OR</p> <p>(b) Using distance formula, prove that the points $A(3, 1)$, $B(6, 4)$ and $C(8, 6)$ are collinear.</p>	
Value Point	<p>OR</p> <p>(a) $AB = \sqrt{(6 - 3)^2 + (4 - 1)^2} = 3\sqrt{2}$</p> $BC = \sqrt{(8 - 6)^2 + (6 - 4)^2} = 2\sqrt{2}$ $AC = \sqrt{(8 - 3)^2 + (6 - 1)^2} = 5\sqrt{2}$ <p>Clearly, $AB + BC = AC$</p> <p>So, A, B and C are collinear points.</p>	
11.	<p>(a) Find the values of 'a' for which the distance between the points $P(1, 2)$ and $Q(-2, a)$ is 5 units.</p> <p>OR</p> <p>(b) Find the coordinates of the point which divides the join of $(4, -3)$ and $(8, -5)$ in the ratio $3 : 1$.</p>	Comptt.
Value Point	<p>(a) $\sqrt{(-2 - 1)^2 + (a - 2)^2} = 5$</p> $a = 6 \text{ or } a = -2$ <p>OR</p> <p>(b) Let the required point be $P(x, y)$</p> $(x, y) = \left(\frac{3(8) + 1(4)}{3+1}, \frac{3(-5) + 1(-3)}{3+1} \right) = \left(7, -\frac{9}{2} \right)$	

3-MARKS QUESTIONS		
12.	<p>(A) If points A($-5, y$), B($2, -2$), C($8, 4$) and D($x, 5$) taken in order, form a parallelogram ABCD, then find the values of x and y. Hence, find lengths of sides of the parallelogram.</p> <p style="text-align: center;">OR</p> <p>(B) A($6, -3$), B($0, 5$) and C($-2, 1$) are vertices of $\triangle ABC$. Points P($3, 1$) and Q($2, -1$) lie on sides AB and AC respectively. Check whether $\frac{AP}{PB} = \frac{AQ}{QC}$.</p>	
Value Point	<p>(A) The diagonals of a parallelogram bisect each other. So,</p> $\left(\frac{-5+8}{2}, \frac{y+4}{2}\right) = \left(\frac{2+x}{2}, \frac{-2+5}{2}\right)$ $x = 1, y = -1$ <p>(B) Clearly, P and Q are the mid-points of AB and AC respectively.</p> <p>Therefore, $\frac{AP}{PB} = \frac{AQ}{QC} = 1$.</p>	
13.	<p>(a) Prove that P($3, -3$), Q($5, -2$), R($6, 0$) and S($4, -1$) are the vertices of a rhombus PQRS. Also, find if it is a square or not.</p> <p style="text-align: center;">OR</p> <p>(b) Find the ratio in which the point $(-5, p)$ divides the line segment joining $(-7, -2)$ and $(-4, 5)$. Hence, find the value of p.</p>	For visually impaired candidates
Value Point	<p>(a) Using distance formula, we have</p> $PQ = QR = RS = PS = \sqrt{5}$. So, PQRS is a rhombus. $PR \neq QS$, therefore, PQRS is not a square. <p style="text-align: center;">OR</p> <p>(b) Let P($-5, p$) divide A($-7, -2$) and B($-4, 5$) in the ratio $m : n$.</p> <p>Using the section formula for the x-coordinate, we have</p> $\frac{m(-4) + n(-7)}{m + n} = -5$ <p>Ratio</p> $m : n = 2 : 1$ <p>Using the section formula for the y-coordinate, we have</p> $\frac{2(5) + 1(-2)}{2 + 1} = p$ $\frac{8}{3} = p$	

14.	If the point $Q(0, 1)$ is equidistant from points $P(5, -3)$ and $R(x, 6)$, then find the value/s of x . Also, find the distance QR and PR .	Comptt.
Value Point	$QP^2 = QR^2$ $x^2 + 25 = 41$ $x = 4 \text{ or } -4$ <p>When $x = 4$, $QR = \sqrt{41}$, $PR = \sqrt{82}$</p> <p>When $x = -4$, $QR = \sqrt{41}$, $PR = 9\sqrt{2}$</p>	
15.	If the point dividing the line segment joining the points $A(3, 4)$ and $B(k, 6)$ in the ratio $1 : 2$, lies on the line $x + y - 10 = 0$, then find the value of 'k'.	Comptt.
Value Point	<p>Let $P(x, y)$ divides AB in the ratio $m : n$ and P lies on $x + y - 10 = 0$, therefore,</p> $P\left(\frac{k+6}{3}, \frac{14}{3}\right) \text{ and } \frac{k+6}{3} + \frac{14}{3} - 10 = 0 \Rightarrow k = 10$	

Chapter 8—Introduction to Trigonometry

6.	If $x \tan 45^\circ \cos 60^\circ = \sqrt{3} \sin 60^\circ \cot 60^\circ$, then the value of x is: (A) 1 (B) $\frac{1}{\sqrt{3}}$ (C) $\sqrt{3}$ (D) $\frac{\sqrt{3}}{2}$	Comptt.
Appropriate Option	(C) $\sqrt{3}$	
7.	If $k \sin 30^\circ = \sqrt{2} \sin 45^\circ \tan 45^\circ$, then the value of 'k' is: (A) 0 (B) 1 (C) $\frac{1}{2}$ (D) 2	Comptt.
Appropriate Option	(D) 2	
8.	The value of $\frac{\sin^2 90^\circ + \cos^2 0^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$ is: (A) 1 (B) 0 (C) 2 (D) 4	Comptt.
Appropriate Option	(C) 2	
	2-MARKS QUESTIONS	
9.	If $3 \cot A = 4$, then determine the value of $\cos^2 A - \sin^2 A$.	Comptt.
Value Point	$\cot A = \frac{4}{3}$, $\sin A = \frac{3}{5}$, $\cos A = \frac{4}{5}$ $\cos^2 A - \sin^2 A = \frac{7}{25}$	
	3-MARKS QUESTIONS	
10.	(a) Evaluate: $\frac{2}{3}(\cos^4 30^\circ - \sin^4 45^\circ) - 3(\sin^2 60^\circ - \sec^2 45^\circ) + \frac{1}{4} \cot^2 30^\circ$ OR (b) Prove that: $\frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} = \frac{2}{1 - 2 \cos^2 A}$	For visually impaired candidates
Value Point	(a) $\frac{2}{3}(\cos^4 30^\circ - \sin^4 45^\circ) - 3(\sin^2 60^\circ - \sec^2 45^\circ) + \frac{1}{4} \cot^2 30^\circ$ $= \frac{2}{3} \left(\left(\frac{\sqrt{3}}{2} \right)^4 - \left(\frac{1}{\sqrt{2}} \right)^4 \right) - 3 \left(\left(\frac{\sqrt{3}}{2} \right)^2 - (\sqrt{2})^2 \right) + \frac{1}{4} (\sqrt{3})^2$	

$$\begin{aligned}
 &= \frac{2}{3} \left(\frac{9}{16} - \frac{1}{4} \right) - 3 \left(\frac{3}{4} - 2 \right) + \frac{1}{4} (3) \\
 &= \frac{113}{24}
 \end{aligned}$$

OR

$$\begin{aligned}
 (b) \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} \\
 &= \frac{(\sin A + \cos A)^2 + (\sin A - \cos A)^2}{\sin^2 A - \cos^2 A} \\
 &= \frac{2}{1 - \cos^2 A - \cos^2 A} \\
 &= \frac{2}{1 - 2\cos^2 A}
 \end{aligned}$$

11.	Prove that:	Comptt.
------------	-------------	----------------

$$\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$$

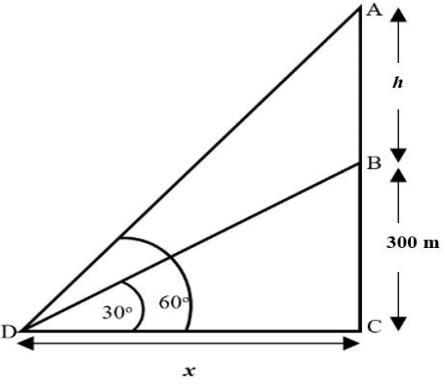
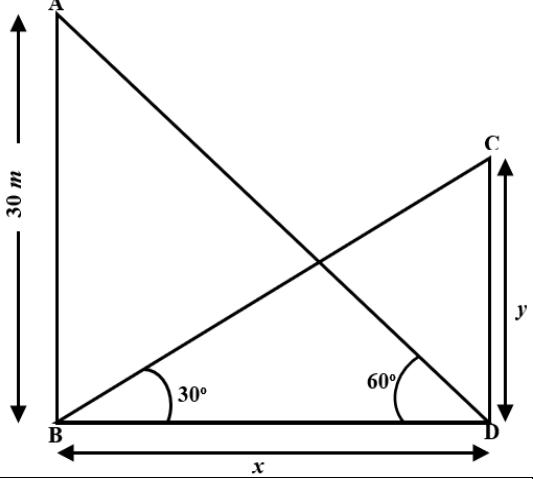
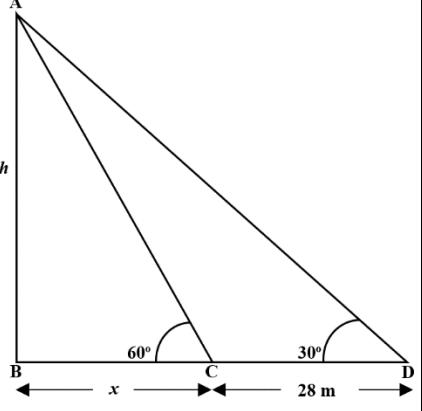
Value Point	$ \begin{aligned} &\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} \\ &= \frac{\sin \theta (1 - 2\sin^2 \theta)}{\cos \theta (2\cos^2 \theta - 1)} \\ &= \frac{\sin \theta (1 - 2\sin^2 \theta)}{\cos \theta (1 - 2\sin^2 \theta)} \\ &= \tan \theta \end{aligned} $	
--------------------	---	--

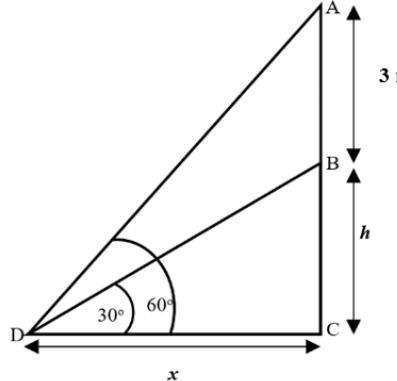
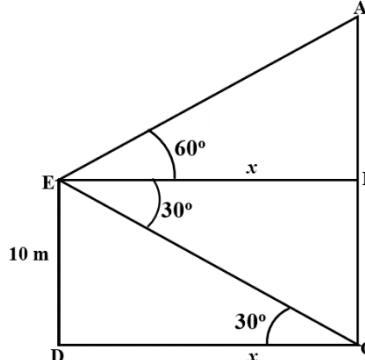
12.	Prove that:	Comptt.
------------	-------------	----------------

$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \left(\frac{1 - \tan A}{1 - \cot A} \right)^2$$

Value Point	$ \begin{aligned} &RHS: \left(\frac{1 - \tan A}{1 - \cot A} \right)^2 \\ &\left(\frac{\cos A - \sin A}{\sin A - \cos A} \right)^2 \left(\frac{\sin A}{\cos A} \right)^2 = \tan^2 A \\ &LHS: \frac{1 + \tan^2 A}{1 + \cot^2 A} \\ &\frac{\sec^2 A}{\cosec^2 A} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A \\ &LHS = RHS \end{aligned} $	
--------------------	---	--

13.	<p>Prove that:</p> $\sqrt{\frac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A$	Comptt.
Value Point	$\sqrt{\frac{1 + \sin A}{1 - \sin A}}$ $\sqrt{\frac{1 + \sin A}{1 - \sin A}} \times \sqrt{\frac{1 + \sin A}{1 + \sin A}}$ $\sqrt{\frac{(1 + \sin A)^2}{1 - \sin^2 A}}$ $\frac{1 + \sin A}{\cos A}$ $\sec A + \tan A$	
4-MARKS QUESTIONS		
14.	<p>A teacher asked his students to draw a right triangle ABC with AB = 8 cm, $\angle B = 90^\circ$ and BC = 15 cm. Based on the above, answer the following:</p> <p>(i) Evaluate $(\sin^2 A - \cos^2 A)$</p> <p>(ii) Evaluate $\left(\frac{1}{\cos^2 A} - \frac{1}{\cot^2 A}\right)$</p> <p>(iii) (a) Evaluate $\frac{2}{1 + \tan^2 A}$ and prove that it is equal to $2\sin A \cos A$.</p> <p style="text-align: center;">OR</p> <p>(iii) (b) Evaluate: $\frac{\tan^2 A - \sec^2 A}{\cot^2 A - \operatorname{cosec}^2 A}$</p>	For visually impaired candidates
Value Point	<p>AB = 8 cm, $\angle B = 90^\circ$ and BC = 15 cm.</p> <p>Using Pythagoras theorem, AC = 17 cm</p> <p>(i) $\sin A = \frac{15}{17}$, $\cos A = \frac{8}{17}$, $\tan A = \frac{15}{8}$, $\operatorname{cosec} A = \frac{17}{15}$, $\sec A = \frac{17}{8}$, $\cot A = \frac{8}{15}$</p> $(\sin^2 A - \cos^2 A) = \frac{161}{289}$ <p>(ii) $\left(\frac{1}{\cos^2 A} - \frac{1}{\cot^2 A}\right) = (\sec^2 A - \tan^2 A) = 1$</p>	




(iii) (a) $\frac{2}{1 + \tan^2 A} = 2\cos^2 A = \frac{128}{289}$



(iv) $2\sin A \cos A = 2 \left(\frac{15}{17}\right) \left(\frac{8}{17}\right) = \frac{240}{289}$

(v) So, $\frac{2}{1 + \tan^2 A} \neq 2\sin A \cos A$

(vi) $\frac{\tan^2 A - \sec^2 A}{\cot^2 A - \cosec^2 A} = \frac{-(-\tan^2 A + \sec^2 A)}{-(-\cot^2 A + \cosec^2 A)} = \frac{-1}{-1} = 1$

Chapter 9—Some Applications of Trigonometry

Value Point	<p>In $\triangle BCD$, $\frac{BC}{DC} = \tan 30^\circ$ $x = 300\sqrt{3} \dots \dots \dots (1)$</p> <p>In $\triangle ACD$, $\frac{AC}{DC} = \tan 60^\circ$ $h + 300 = \sqrt{3}x \dots \dots \dots (2)$</p> <p>From (1) and (2), we get $h = 600$ and $x = 519$</p> <p>The height of the balloon from the ground is 900 m and the distance of the tower from the point of observation is 519 m.</p>	
4.	<p>The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 30 m high, find the height of the building and distance between the building and the tower. (Use $\sqrt{3} = 1.73$)</p>	
Value Point	<p>In $\triangle ABD$, $\frac{AB}{BD} = \tan 60^\circ$ $30 = \sqrt{3}x \dots \dots \dots (1)$</p> <p>In $\triangle CBD$, $\frac{CD}{BD} = \tan 30^\circ$ $x = \sqrt{3}y \dots \dots \dots (2)$</p> <p>From (1) and (2), we get $y = 10$ and $x = 10\sqrt{3} = 17.3$</p> <p>So, the height of the building is 10 m and distance between the building and the tower is 17.3 m.</p>	
5.	<p>From a point on the ground, the angle of elevation of the top of a tree observed by a person is 60°. When moved back by 28 m, in the same line, the angle of elevation from another point on ground becomes 30°. Find the height of the tree and its distance from the initial point. (Use $\sqrt{3} = 1.73$)</p>	
Value Point	<p>In $\triangle ABC$, $\frac{AB}{BC} = \tan 60^\circ$ $h = \sqrt{3}x \dots \dots \dots (1)$</p> <p>In $\triangle ABD$, $\frac{AB}{BD} = \tan 30^\circ$ $x + 28 = \sqrt{3}h \dots \dots \dots (2)$</p> <p>From (1) and (2), we get $x = 14$ and $h = 14\sqrt{3} = 24.22$</p> <p>So, the height of the tree is 24.22 m and its distance from the initial point is 14 m.</p>	
6.	<p>A statue 3 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle</p>	

	<p>of elevation of the top of the pedestal is 30°. Find the height of the pedestal and its distance from the point of observation on ground. (Use $\sqrt{3} = 1.73$)</p>	
Value Point	<p>In $\triangle BCD$, $\frac{BC}{DC} = \tan 30^\circ$ $x = \sqrt{3}h \dots \dots \dots (1)$</p> <p>In $\triangle ACD$, $\frac{AC}{DC} = \tan 60^\circ$ $h + 3 = \sqrt{3}x \dots \dots \dots (2)$</p> <p>From (1) and (2), we get $h = 1.5$ and $x = 2.595$</p> <p>So, the height of the pedestal 1.5 m and its distance from the point of observation on ground is 2.595 m.</p>	
7.	<p>A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill.</p>	For visually impaired candidates
Value Point	<p>In $\triangle ECD$, $\frac{ED}{DC} = \tan 30^\circ$ $x = 10\sqrt{3} \dots \dots \dots (1)$</p> <p>In $\triangle ABE$, $\frac{AB}{BE} = \tan 60^\circ$ $h = \sqrt{3}x \dots \dots \dots (2)$</p> <p>From (1) and (2), we get $h = 30$ and $x = 10\sqrt{3}$</p> <p>So, the distance of the hill from the ship is $10\sqrt{3}$ m and the height of the hill is 40 m.</p>	
8.	<p>(a) An aeroplane when flying at a height of 5000 m above the ground passes vertically above another aeroplane at an instant when the angles of elevation of the two planes from a point on the ground are 60° and 45° respectively. Find the vertical distance between the aeroplanes at that instant. [Use $\sqrt{3} = 1.73$]</p> <p style="text-align: center;">OR</p> <p>(b) A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From a point 20 m away from this point on the same bank, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal. [Use $\sqrt{3} = 1.73$]</p>	Comptt.

OR

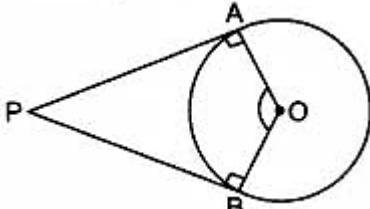
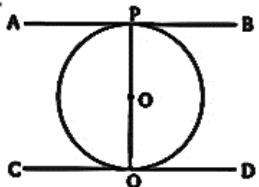
(iii) (b) Calculate length of (AF + FE + EB).

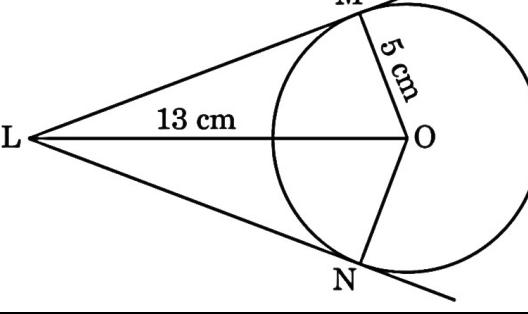
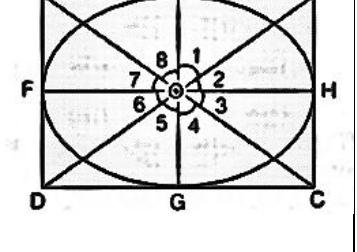
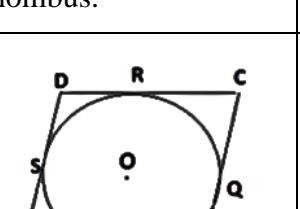
Value Point

$$(i) \cos 45^\circ = \frac{50}{BC} \Rightarrow BC = 50 \times 1.41 = 70.5 \text{ m}$$

$$(ii) \tan 45^\circ = \frac{38}{AG} \Rightarrow AG = 38 \text{ m}$$

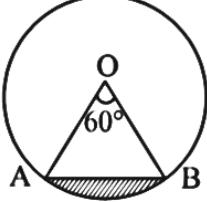
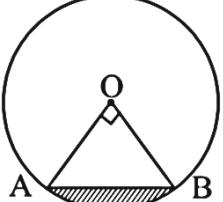
$$(iii) (a) \sin 60^\circ = \frac{78}{AC} \Rightarrow AC = 89.96 \text{ m}$$

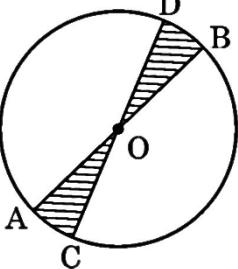


$$\text{Perimeter of } \triangle ABC = 70.5 + 89.96 + 38 + 50 + 40 = 288.46 \text{ m}$$

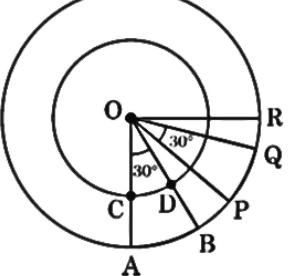



OR

$$(b) \cos 30^\circ = \frac{40}{BE} \Rightarrow BE = 46.13 \text{ m}$$

$$AF + FE + EB = 53.58 + 53 + 46.13 = 152.71 \text{ m}$$



Chapter 10 - Circles




	(A) 42° (C) 48°	(B) 38° (D) 132°	
Appropriate Option	(D) 132°		
5.	The distance between two parallel tangents to a circle of radius 3.5 cm is: (A) 3.5 cm (C) 1.75 cm	(B) 14 cm (D) 7 cm	Comptt.
Appropriate Option	(D) 7 cm		
6.	The degree measure of the angle at the centre of a semicircle is: (A) 90° (C) 120°	(B) 60° (D) 180°	Comptt.
Appropriate Option	(D) 180°		
	2-MARKS QUESTIONS		
7.	<p>(A) Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.</p> <p style="text-align: center;">OR</p> <p>(B) Prove that the tangents drawn at the ends of a diameter of a circle are parallel.</p>		
Value Point	<p>(A) Given: From the figure, PA and PB are tangents drawn from an external point P to the circle with center O.</p> <p>To prove: $\angle APB + \angle BOA = 180^\circ$</p> <p>Proof: In quadrilateral OAPB,</p> $\angle APB + \angle PBO + \angle BOA + \angle OAP = 360^\circ$ $\angle APB + 90^\circ + \angle BOA + 90^\circ = 360^\circ$ $\angle APB + \angle BOA = 360^\circ - 180^\circ$ $\angle APB + \angle BOA = 180^\circ$ <p>Hence, proved.</p> <p style="text-align: center;">OR</p> <p>(B) Let PQ be the diameter of a circle with center O. AB and CD are two tangents drawn to the circle at P and Q respectively.</p> <p>We have, $OP \perp AB$ and $OQ \perp CD$</p> $\angle BPO = \angle CQO = 90^\circ$ <p>Therefore, $AB \parallel CD$ [Transversal PQ makes equal interior alternate angles]</p>		

<p>8. In the given figure, from a point L which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents LM and LN are drawn to the circle. Find the perimeter of the quadrilateral LMON.</p>	<p>Comptt.</p>
<p>Value Point</p> <p>In $\triangle LOM$, we have $LM = \sqrt{13^2 - 5^2} = 12$ cm As $LM = LN = 12$ cm Perimeter of quadrilateral LMON = $LM + LN + OM + ON = 34$ cm</p>	
<p>3-MARKS QUESTIONS</p>	
<p>9. Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.</p>	
<p>Value Point</p> <p>Given: A circle with centre O is inscribed in a quadrilateral ABCD quadrilateral ABCD In $\triangle AEO$ and $\triangle AFO$ $OE = OF$ $\angle OEA = \angle OFA = 90^\circ$ $OA = OA$ $\triangle AEO \cong \triangle AFO$ (SAS congruency) $\angle 7 = \angle 8 \dots$ (i) (CPCT) Similarly, $\angle 1 = \angle 2 \dots$ (ii) $\angle 3 = \angle 4 \dots$ (iii) $\angle 5 = \angle 6 \dots$ (iv) $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^\circ$ (angle around a point is 360°) $2\angle 1 + 2\angle 8 + 2\angle 4 + 2\angle 5 = 360^\circ$ $\angle 1 + \angle 8 + \angle 4 + \angle 5 = 180^\circ$ $(\angle 1 + \angle 8) + (\angle 4 + \angle 5) = 180^\circ$ $\angle AOB + \angle COD = 180^\circ$ Hence Proved.</p>	
<p>10. Prove that the parallelogram circumscribing a circle is a rhombus.</p>	
<p>Value Point</p> <p>Given: ABCD is a parallelogram and a circle touch all four sides AB, BC, CD and DA.</p> <p>To prove: ABCD is a rhombus.</p> <p>Proof: Tangents drawn from a common point to a circle are equal, so</p>	

Chapter 11 – Areas Related to Circles

7.	<p>There is one Assertion (A) and one Reason (R). Choose the correct answer of these questions from the four options (A), (B), (C) and (D) given below:</p> <p>(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the assertion (A).</p> <p>(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of the assertion (A).</p> <p>(c) Assertion (A) is true but reason (R) is false.</p> <p>(d) Assertion (A) is false but reason (R) is true.</p> <p>Assertion (A): Area of a sector of a circle with radius r and angle with degree measure θ is $\frac{\theta}{360} \times 2\pi r$.</p> <p>Reason (R): Area of a segment of a circle = Area of the corresponding sector – Area of the corresponding triangle.</p>	Comptt.
Appropriate Option	(d) Assertion (A) is false but reason (R) is true.	
8.	The degree measure of the angle at the centre of a semicircle is:	Comptt.
	(A) 90° (B) 60°	
	(C) 120° (D) 180°	
Appropriate Option	(D) 180°	
9.	The degree measure of the angle at the centre of a quadrant of a circle is:	Comptt.
	(A) 30° (B) 60°	
	(C) 90° (D) 180°	
Appropriate Option	(C) 90°	
	3-MARKS QUESTIONS	
10.	<p>A chord of a circle of radius 10 cm subtends an angle of 60° at the centre O. Find the area of the shaded region.</p> <p>(Use $\sqrt{3} = 1.73$, $\sqrt{2} = 1.41$ and $\pi = 3.14$)</p>	
Value Point	<p>Here, $r = 10$ cm and $\theta = 60^\circ$</p> <p>Area of the minor sector $= \frac{\theta}{360} \times \pi r^2 = 52.333 \text{ cm}^2$</p> <p>Area of equilateral $\triangle OAB = 43.25 \text{ cm}^2$</p> <p>Area of the shaded region $= 52.333 - 43.25 = 9.08 \text{ cm}^2$ (approx)</p>	
11.	<p>A chord of a circle of radius 14 cm subtends an angle of 90° at the centre O. Find the perimeter of the shaded region.</p> <p>(Use $\sqrt{2} = 1.41$)</p>	

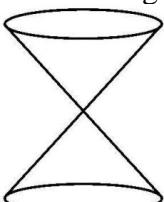
Value Point	<p>Here, $r = 14 \text{ cm}$ and $\theta = 90^\circ$</p> <p>In right $\triangle OAB$, $AB = 14\sqrt{2} \text{ cm} = 19.74 \text{ cm}$</p> <p>Length of the minor arc $AB = \frac{\theta}{360} \times 2\pi r = 21.98 \text{ cm}$</p> <p>Perimeter of the shaded region $= 21.98 + 19.74 = 41.72 \text{ cm}$</p>	
12.	<p>AB and CD are diameters of a circle with centre O and radius 7 cm. If $\angle BOD = 30^\circ$, then find the area and perimeter of the shaded region.</p>	
Value Point	<p>Area of the shaded region $= 2 \times \frac{30}{360} \times \pi(7)^2 = 25.67 \text{ cm}^2$</p> <p>Perimeter of the shaded region $= OA + OB + OC + OD + 2 \times \frac{30}{360} \times 2\pi(7)$</p> $= 35.33 \text{ cm}$	
13.	<p>(a) The length of the minute-hand of a clock is 14 cm. Find the area swept by this minute-hand in 5 minutes.</p> <p style="text-align: center;">OR</p> <p>(b) To warn ships for underwater rocks, a lighthouse throws a red coloured light over a sector of central angle 80° up to a distance of 16.5 km. Find the area of the sea over which the ships are warned.</p>	Comptt.
Value Point	<p>(a) Angle swept by minute-hand in 5 minutes $= 5 \times 6^\circ = 30^\circ$</p> <p>Here, $r = 14 \text{ cm}$, and $\theta = 30^\circ$</p> <p>Therefore, area swept by the minute hand in 5 minutes $= \frac{\theta}{360} \times \pi r^2$</p> $= 51.33 \text{ cm}^2$ <p style="text-align: center;">OR</p> <p>(b) Here, $r = 16.5 \text{ km}$, and $\theta = 80^\circ$</p> <p>Area of the sea over which the ships are warned $= \frac{\theta}{360} \times \pi r^2$</p> $= 189.97 \text{ km}^2$	
	4-MARKS QUESTIONS	
14.	<p>A farmer has put up a decorative windmill in his farm in which there are eight blades of equal width and equally placed in circular arrangement.</p> <p>A circular wire goes through them.</p>	

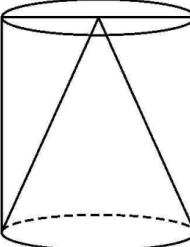
The diagram shows two blades OAB and OPQ in a quarter circle with centre O. $\angle AOB = \angle POQ = 30^\circ$, OA = 28 cm, OC = 21 cm.

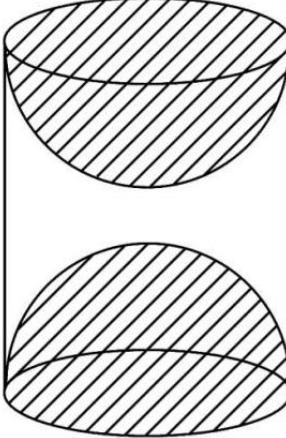
O is the centre of both the circles.

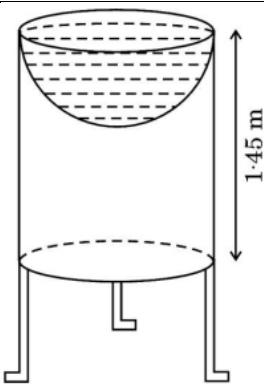
- (i) Determine the measure of $\angle BOP$.
- (ii) Find the length of arc CD.
- (iii) (a) Find the area of region CABD.

OR


- (iii) (b) Find perimeter of region CABD.


Value Point	<ul style="list-style-type: none"> (i) $\angle BOP = 45^\circ - 30^\circ = 15^\circ$ (ii) Find the length of arc CD = $\frac{30}{360} \times 2\pi(21) = 11$ cm (iii) (a) area of region CABD = $\frac{30}{360} \times \pi(28)^2 - \frac{30}{360} \times \pi(21)^2 = 89.83$ cm^2 <p style="text-align: center;">OR</p> <ul style="list-style-type: none"> (iii) (b) perimeter of region CABD = CA + DB + $l_{\text{arc CD}} + l_{\text{arc AB}}$ $= 7 + 7 + 11 + 14.67$ $= 34.67$ cm 	
--------------------	--	--


15.	<p>Deepak has to cut the circular pizza into 8 equal slices such that all 8 of them get a slice. The pizza is 35 cm in diameter.</p> <p>Using the information, answer the following questions:</p> <ul style="list-style-type: none"> (i) How many times will he have to make cut along the diameter to make 8 slices? (ii) What is the radius of each sector type slice? (iii) (a) Find the area of each slice of pizza. <p style="text-align: center;">OR</p> <ul style="list-style-type: none"> (iii) (b) Find the area of a slice, if only four equal pieces are cut. 	For visually impaired candidates
------------	--	---


Value Point	<ul style="list-style-type: none"> (i) 4 cuts (ii) Radius of each sector type slice = 17.5 cm (iii) (a) area of each slice of pizza = $\frac{45}{360} \times \pi(17.5)^2 = 120.31$ cm^2 <p style="text-align: center;">OR</p> <ul style="list-style-type: none"> (iii) (b) area of each slice when four equal pieces are cut = $\frac{90}{360} \times \pi(17.5)^2$ $= 240.63$ cm^2 	
--------------------	---	--

Chapter 12 – Surface Areas and Volumes

1-MARK QUESTIONS	
1.	<p>Two right circular cylinders of equal volumes have their heights in the ratio 1 : 2. The ratio of their radii is:</p> <p>(A) $\sqrt{2} : 1$ (B) $1 : 2$ (C) $1 : 4$ (D) $1 : \sqrt{2}$</p>
Appropriate Option	(A) $\sqrt{2} : 1$
2.	<p>The curved surface area of a cone with base radius 7 cm, is 550 cm^2. The slant height of the cone is:</p> <p>(A) 25 cm (B) 14 cm (C) 20 cm (D) 24 cm</p>
Appropriate Option	(A) 25 cm
3.	<p>The largest possible cone is just fitted inside a hollow cube of edge 25 cm. The radius of the base of the cone is:</p> <p>(A) 5 cm (B) 12.5 cm (C) 25 cm (D) 10 cm</p>
Appropriate Option	(B) 12.5 cm
4.	<p>There is one Assertion (A) and one Reason (R). Choose the correct answer of these questions from the four options (A), (B), (C) and (D) given below :</p> <p>(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the assertion (A).</p> <p>(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of the assertion (A).</p> <p>(c) Assertion (A) is true but reason (R) is false.</p> <p>(d) Assertion (A) is false but reason (R) is true.</p> <p>Assertion (A): When a hemisphere of same radius (r) is carved out from one side of the a solid wooden cylinder, the total surface area of remaining solid is increased is $2\pi r^2$.</p> <p>Reason (R): Curved surface area of hemisphere is $2\pi r^2$.</p> <p>(d) Assertion (A) is false but reason (R) is true.</p>
Appropriate Option	(d) Assertion (A) is false but reason (R) is true.
5.	<p>Two identical cones are joined as shown in the figure. If radius of base is 4 cm and slant height of the cone is 6 cm. then height of the solid is:</p> <p>(A) 8 cm (B) $4\sqrt{5}$ cm (C) $2\sqrt{5}$ cm (D) 12 cm</p>

Appropriate Option	(B) $4\sqrt{5}$ cm	
6.	The volume of air in a hollow cylinder is 450 cm^3 . A cone of same height and radius as that of cylinder is kept inside it. The volume of empty space in the cylinder is: 	
	(A) 225 cm^3 (C) 250 cm^3	(B) 150 cm^3 (D) 300 cm^3
Appropriate Option	(D) 300 cm^3	
7.	The total surface area of a solid hemisphere of radius 7 cm is: (A) $98\pi \text{ cm}^3$ (C) $147\pi \text{ cm}^3$	(B) $196\pi \text{ cm}^3$ (D) $174\pi \text{ cm}^3$
Appropriate Option	(C) $147\pi \text{ cm}^3$	For visually impaired candidates
	3-MARKS QUESTIONS	
8.	<p>(a) A spherical glass vessel has a cylindrical neck 7 cm long and 8 cm in diameter. The radius of spherical part is 10 cm. Find the volume of the vessel.</p> <p style="text-align: center;">OR</p> <p>(b) From each end of a solid cylinder of height 20 cm and base radius 7 cm, a cone of base radius 2.1 cm and height 5 cm is scooped out. Find the volume of the remaining solid.</p>	
Value Point	<p>(a) The total volume is the sum of the volume of the cylinder and the volume of the sphere:</p> $V_{\text{total}} = V_c + V_s$ $V_{\text{total}} = 112\pi + \frac{4000\pi}{3}$ $V_{\text{total}} = \frac{4336\pi}{3} \text{ cm}^3$ <p style="text-align: center;">OR</p> <p>(b) $V_{\text{remaining}} = V_{\text{cylinder}} - V_{\text{removed}}$ $V_{\text{remaining}} = 980\pi - 14.7\pi$ $V_{\text{remaining}} = 965.3\pi \text{ cm}^3$</p>	
	5-MARKS QUESTIONS	
9.	<p>(a) A hemispherical bowl of internal diameter 42 cm contains a liquid. This liquid is to be filled in cylindrical bottles of radius 3 cm and height 8 cm. How many bottles are required to empty the bowl?</p> <p style="text-align: center;">OR</p>	For visually impaired candidates

	<p>(b) A solid is composed of cylinder with hemispherical ends. If the total height of the solid is 16.2 cm and the diameter of the cylinder is 4.2 cm, find the volume and total surface area of solid. $\left[\pi = \frac{22}{7}\right]$</p>	
Value Point	<p>(a) Number of bottle required = $\frac{\text{Volume of hemispherical bowl}}{\text{Volume of one cylindrical bottle}}$</p> <p>Number of bottle required = $\frac{6174\pi}{72\pi} = 85.75$ We need 86 bottles to contain all the liquid.</p> <p>OR</p> <p>(b) $V_{\text{total}} = V_{\text{cylinder}} + 2 \times V_{\text{hemisphere}}$ $V_{\text{total}} = 158.4 + 54.72 = 213.12 \text{ cm}^3$</p>	
10.	<p>A tent is in the shape of a cylinder surmounted by a conical top of same radius. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m, find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of ₹ 500 per m^2.</p>	Comptt.
Value Point	<p>Total Area = $\text{CSA}_{\text{cylinder}} + \text{CSA}_{\text{cone}}$</p> <p>Total Area = $26.4 + 17.6 = 44 \text{ m}^2$</p> <p>Cost = Total Area x Rate = $44 \text{ m}^2 \times ₹ 500 \text{ per m}^2 = ₹ 22000$</p>	
11.	<p>A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in the figure. If the height of the cylinder is 10 cm, and its base is of radius is 3.5 cm, find the total surface area of the article.</p>	Comptt.
Value Point	<p>$\text{TSA} = \text{CSA}_{\text{cylinder}} + 2 \times \text{CSA}_{\text{hemisphere}}$</p> <p>$\text{TSA} = 220 + 154 = 374 \text{ cm}^2$</p>	
12.	<p>Sukriti made a bird-bath for her garden in the shape of a hollow cylinder with a hemispherical depression at one end as shown in the figure. The height of the cylinder is 1.45 m and its radius is 30 cm. Find the total surface area of the bird-bath.</p>	Comptt.

Value Point $\text{TSA of bird bath} = \text{CSA}_{\text{cylinder}} + \text{CSA}_{\text{hemisphere}}$

$$\text{TSA of bird bath} = 33000 \text{ cm}^2 = 3.3 \text{ m}^2$$

4-MARKS QUESTIONS

13. Playing in a ball pool is good entertainment for kids. Suhana bought 600 new balls of diameter 7 cm to fill in the pool for her kids. The cuboidal box containing 600 balls has dimensions $42 \text{ cm} \times 91 \text{ cm} \times 50 \text{ cm}$ (l \times b \times h).

Based on above information, answer the following questions:

(i) Find the volume of one ball.

1

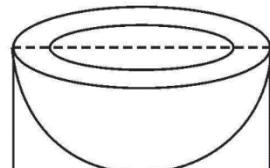
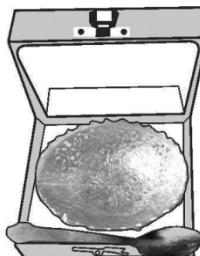
(ii) 10 balls are painted with neon colours. Determine the area of painted surface.

1

(iii) (a) Find the volume of empty space in the box.

2

OR



(iii) (b) The lowermost layer of the balls covers the base of the box edge to edge when balls are placed evenly adjacent to each other. (A) How much area is covered by one ball? (B) How many balls are there in lowermost layer? 2

Value Point

- (i) Volume of one ball = 179.67 cm^3
- (ii) Area of painted surface = $10 \times \text{CSA of one ball} = 1540 \text{ cm}^2$
- (iii) (a) Volume of empty space in the box = Volume of box – Volume of 600 balls
Volume of empty space in the box = $191100 - 107800 = 83300 \text{ cm}^3$
OR
(iii) (A) Area covered by one ball = $7 \times 7 = 49 \text{ cm}^2$
(B) Number of balls in lowermost layer = $\frac{\text{Area of base of box}}{\text{Area covered by one ball}} = 78$

14. A hemispherical bowl is packed in a cuboidal box. The bowl just fits in the box. Inner radius of the bowl is 10 cm. Outer radius of the bowl is 10.5 cm.

Based on the above, answer the following questions:

- (i) Find the dimensions of the cuboidal box.
- (ii) Find the total outer surface area of the box.
- (iii) (a) Find the difference between the capacity of the bowl and the volume of the box. (use $\pi = 3.14$)

	<p style="text-align: center;">OR</p> <p>(iii) (b) The inner surface of the bowl and the thickness is to be painted. Find the area to be painted.</p>	
Value Point	<p>(i) Dimensions of the cuboidal box are 21 cm x 21 cm x 10.5 cm.</p> <p>(ii) Total Surface Area of the Box = $2(lb + bh + hl) = 1764 \text{ cm}^2$</p> <p>(iii) (a) Difference between capacity = $\text{Volume}_{\text{box}} - \text{Volume}_{\text{hemisphere}} = 2537.17 \text{ cm}^3$</p> <p style="text-align: center;">OR</p> <p>(iii) (b) Area to be painted = $2\pi r^2 + \pi R^2 - \pi r^2 = 660.185 \text{ cm}^2$</p>	

Chapter 13—Statistics

5.	<p>The formula: $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$, where symbols have their usual meanings, is used to calculate:</p> <p>(A) Mean of grouped data (B) Median of grouped data (C) Mode of grouped data (D) Range of grouped data</p>	Comptt.														
Appropriate Option	(C) Mode of grouped data															
6.	<p>In a grouped frequency distribution, it is assumed that the frequency of each class interval is centered around its:</p> <p>(A) Lower limit (B) Upper limit (C) Mid-point (D) None of the above</p>	Comptt.														
Appropriate Option	(C) Mid-point															
3-MARKS QUESTIONS																
7.	<p>The following table shows the marks obtained by 110 students of class X in a school during a particular academic session. Find the mode the distribution.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td><i>Marks Obtained :</i></td> <td>0 – 20</td> <td>20 – 40</td> <td>40 – 60</td> <td>60 – 80</td> <td>80 – 100</td> </tr> <tr> <td><i>Number of Students :</i></td> <td>21</td> <td>25</td> <td>30</td> <td>24</td> <td>10</td> </tr> </table>	<i>Marks Obtained :</i>	0 – 20	20 – 40	40 – 60	60 – 80	80 – 100	<i>Number of Students :</i>	21	25	30	24	10	Comptt.		
<i>Marks Obtained :</i>	0 – 20	20 – 40	40 – 60	60 – 80	80 – 100											
<i>Number of Students :</i>	21	25	30	24	10											
Value Point	$\text{Mode} = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ $l = 40$ (lower limit of modal class) $f_1 = 30$ (frequency of modal class) $f_0 = 25$ (frequency of previous class) $f_2 = 24$ (frequency of next class) $h = 20$ (class width) <p>Substitute the above values in the formula, we get Mode = 49.09 marks</p>															
8.	<p>Following frequency distribution shows the ages of girls of a city at the time of their marriage. If modal age of the data is 24 years, find the mission frequency 'x'.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td><i>Age (in years) :</i></td> <td>18 – 23</td> <td>23 – 28</td> <td>28 – 33</td> <td>33 – 38</td> <td>38 – 43</td> <td>43 – 48</td> </tr> <tr> <td><i>Number of girls :</i></td> <td>160</td> <td>170</td> <td>x</td> <td>50</td> <td>38</td> <td>10</td> </tr> </table>	<i>Age (in years) :</i>	18 – 23	23 – 28	28 – 33	33 – 38	38 – 43	43 – 48	<i>Number of girls :</i>	160	170	x	50	38	10	Comptt.
<i>Age (in years) :</i>	18 – 23	23 – 28	28 – 33	33 – 38	38 – 43	43 – 48										
<i>Number of girls :</i>	160	170	x	50	38	10										
Value Point	<p>Modal age = 24 years So modal class = 23–28, and its frequency = 170 $l = 170$ (lower limit of modal class) $f_1 = 170$ (frequency of modal class) $f_0 = 160$ (frequency of previous class) $f_2 = x$ (frequency of next class) $h = 5$ (class width) Substitute these values in the formula of mode $\text{Mode} = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ we get $x = 130$</p>															

5-MARKS QUESTIONS

9.

Find 'mean' and 'mode' of the following data:

Class	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	6	16	17	4	5	2

Class	f	x	fx
15-20	6	17.5	105
20-25	16	22.5	360
25-30	17	27.5	467.5
30-35	4	32.5	130
35-40	5	37.5	187.5
40-45	2	42.5	85

$$\text{Mean} = \frac{1335}{50} = 26.7$$

$$\text{Mode} = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

$l = 25$ (lower limit of modal class)

$f_1 = 17$ (frequency of modal class)

$f_0 = 16$ (frequency of previous class)

$f_2 = 4$ (frequency of next class)

$h = 5$ (class width)

Substitute the above values in the formula, we get

$$\text{Mode} = 25.36$$

10.

Find 'median' and 'mode' of the following data:

Class	100-105	105-110	110-115	115-120	120-125	125-130
Frequency	6	8	10	4	9	3

Value Point

$$\text{Mode} = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

$l = 110$ (lower limit of modal class)

$f_1 = 10$ (frequency of modal class)

$f_0 = 8$ (frequency of previous class)

$f_2 = 4$ (frequency of next class)

$h = 5$ (class width)

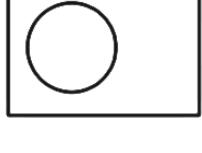
Substitute the above values in the formula, we get

$$\text{Mode} = 111.25$$

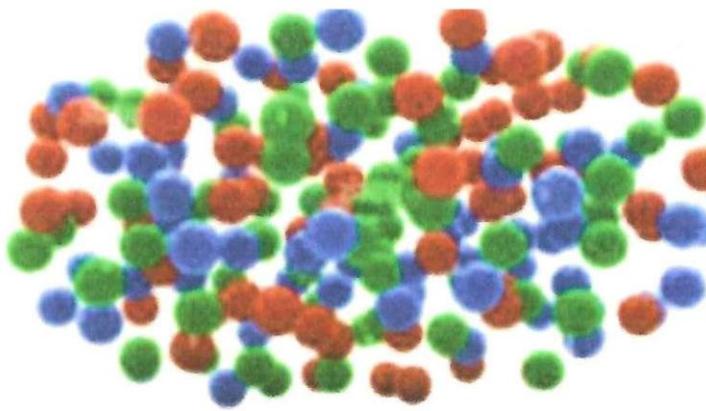
Class	f	cf
100-105	6	6
105-110	8	14
110-115	10	24
115-120	4	28
120-125	9	37
125-130	3	40

	$l = 110$ (lower limit of median class) $f = 10$ (frequency of median class) $cf = 14$ (cf of previous class) $h = 5$ (class width) Substitute the above values in the formula of median, we get $\text{Median} = l + \frac{\frac{N}{2} - cf}{f} \times h$ $\text{Median} = 113$	
--	---	--

11.	Find 'mean' and 'mode' of the following data:															
	<table border="1"> <thead> <tr> <th>Class</th><th>20-25</th><th>25-30</th><th>30-35</th><th>35-40</th><th>40-45</th><th>45-50</th></tr> <tr> <th>Frequency</th><td>9</td><td>8</td><td>11</td><td>13</td><td>4</td><td>5</td></tr> </thead> </table>	Class	20-25	25-30	30-35	35-40	40-45	45-50	Frequency	9	8	11	13	4	5	
Class	20-25	25-30	30-35	35-40	40-45	45-50										
Frequency	9	8	11	13	4	5										


Value Point	<table border="1"> <thead> <tr> <th>Class</th><th>f</th><th>x</th><th>fx</th></tr> </thead> <tbody> <tr> <td>20-25</td><td>9</td><td>22.5</td><td>202.5</td></tr> <tr> <td>25-30</td><td>8</td><td>27.5</td><td>220.0</td></tr> <tr> <td>30-35</td><td>11</td><td>32.5</td><td>357.5</td></tr> <tr> <td>35-40</td><td>13</td><td>37.5</td><td>487.5</td></tr> <tr> <td>40-45</td><td>4</td><td>42.5</td><td>170.0</td></tr> <tr> <td>45-50</td><td>5</td><td>47.5</td><td>237.5</td></tr> </tbody> </table>	Class	f	x	fx	20-25	9	22.5	202.5	25-30	8	27.5	220.0	30-35	11	32.5	357.5	35-40	13	37.5	487.5	40-45	4	42.5	170.0	45-50	5	47.5	237.5	
Class	f	x	fx																											
20-25	9	22.5	202.5																											
25-30	8	27.5	220.0																											
30-35	11	32.5	357.5																											
35-40	13	37.5	487.5																											
40-45	4	42.5	170.0																											
45-50	5	47.5	237.5																											
Mean = $\frac{1675}{50} = 33.5$																														
Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$																														
$l = 35$ (lower limit of modal class) $f_1 = 13$ (frequency of modal class) $f_0 = 11$ (frequency of previous class) $f_2 = 4$ (frequency of next class) $h = 5$ (class width) Substitute the above values in the formula, we get																														
Mode = 35.91																														
12.	Find the mode and the mean of the following frequency distribution:																													
	<table border="1"> <thead> <tr> <th>Class</th><th>0 – 8</th><th>8 – 16</th><th>16 – 24</th><th>24 – 32</th><th>32 – 40</th></tr> <tr> <th>Frequency</th><td>6</td><td>7</td><td>10</td><td>8</td><td>9</td></tr> </thead> </table>	Class	0 – 8	8 – 16	16 – 24	24 – 32	32 – 40	Frequency	6	7	10	8	9	For visually impaired candidates																
Class	0 – 8	8 – 16	16 – 24	24 – 32	32 – 40																									
Frequency	6	7	10	8	9																									

Value Point	$\text{Mode} = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ $l = 16$ (lower limit of modal class) $f_1 = 10$ (frequency of modal class) $f_0 = 7$ (frequency of previous class) $f_2 = 8$ (frequency of next class) $h = 8$ (class width) Substitute the above values in the formula, we get	
		Mode = 20.8


Class	f	x	fx
0–8	6	4	24
8–16	7	12	84
16–24	10	20	200
24–32	8	28	224
32–40	9	36	324

$$\text{Mean} = \frac{856}{40} = 21.4$$

Chapter 14–Probability

5.	<p>Two different coins are tossed together. The probability of getting exactly one tail is:</p> <p>(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) 1</p>	Comptt.
Appropriate Option	(B) $\frac{1}{2}$	
6.	<p>A fair die is thrown once. The probability of getting an even number less than 3 is:</p> <p>(A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 0</p>	Comptt.
Appropriate Option	(A) $\frac{1}{6}$	
7.	<p>The probability of the happening of an event is 'p' and the probability of non-happening of the same event is 'q'. The relation between 'p' and 'q' is:</p> <p>(A) $p + q + 1 = 0$ (B) $p = q - 1$ (C) $p + q = 1$ (D) $p = 1, q = 1$</p>	Comptt.
Appropriate Option	(C) $p + q = 1$	
8.	<p>A fair die is thrown once. The probability of getting a prime number less than 5 is:</p> <p>(A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 1</p>	Comptt.
Appropriate Option	(B) $\frac{1}{3}$	
	2-MARKS QUESTIONS	
9.	<p>(A) A coin is dropped at random on the rectangular region shown in the figure. What is the probability that it will land inside the circle with radius 0.7 m?</p> <p style="text-align: center;">OR</p> <p>(B) A die is thrown twice. What is the probability that (i) difference between two numbers obtained is 3? (ii) sum of the numbers obtained is 8?</p>	
Value Point	(A) Required Probability = $\frac{\text{Area of Circle}}{\text{Area of rectangle}} = 0.257$	
	OR	

	<p>(B) (i) Total outcomes = 36, Favourable Outcomes = 6 { (1, 4), (4, 1), (2, 5), (5, 2), (3, 6), (6, 3)}</p> <p>Required Probability = $\frac{6}{36} = \frac{1}{6}$</p> <p>(ii) Total outcomes = 36, Favourable Outcomes = 5 {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}</p> <p>Required Probability = $\frac{5}{36}$</p>	
10.	<p>(a) A card is drawn at random from a pack of 50 cards numbered 1 to 50. Find the probability of drawing a number which is a perfect square.</p> <p>OR</p> <p>(b) A piggy bank contains fifty ₹ 1 coins, hundred ₹ 2 coins and one hundred and fifty ₹ 5 coins. If it is equally likely any one of the coins will fall out when the bank is turned upside down, find the probability that ₹ 2 coin has not fallen out, when the bank is turned upside down.</p>	For visually impaired candidates
Value Point	<p>(a) Total outcomes = 50, Favourable Outcomes = 7 {1, 4, 9, 16, 25, 36, 49}</p> <p>Required Probability = $\frac{7}{50}$</p> <p>OR</p> <p>(b) Total outcomes = $50 + 100 + 150 = 300$, Favourable Outcomes = 200</p> <p>Required Probability = $\frac{200}{300} = \frac{2}{3}$</p>	
11.	A die is thrown twice. Find the probability that 5 will come up at least once.	For visually impaired candidates
Value Point	Total Outcomes = 36, Favourable Outcomes = 11 Required Probability = $\frac{11}{36}$	
	4-MARKS QUESTIONS	
12.	Aarav and Ashima are brother and sister and on Ashima's birthday, Aarav gifts her a bag filled with 8 red toffees, 10 green toffees and 6 blue toffees. Ashima decides to randomly draw a toffee from the bag. She wants to find the chances of picking a toffee of specific colour and asks the following questions:	

(i) What is the probability of getting a green toffee?	1
(ii) What is the probability of getting a blue toffee?	1
(iii) (a) What is the probability of getting a non-red toffee?	2

OR

(b) What is the probability of getting a red or a green toffee?	2
---	---

Value Point	Total Outcomes = $8 + 10 + 6 = 24$ (i) $P(\text{Green toffee}) = \frac{10}{24} = \frac{5}{12}$ (ii) $P(\text{Blue toffee}) = \frac{6}{24} = \frac{1}{4}$ (iii) (a) $P(\text{non-red toffee}) = 1 - \frac{8}{24} = \frac{16}{24} = \frac{2}{3}$ OR (iii) (b) $P(\text{red or green toffee}) = \frac{8+10}{24} = \frac{3}{4}$	
--------------------	---	--