

**Directorate of Education, GNCT of Delhi**  
**Questions From CBSE Question Papers**  
**Session 2025-2026**  
**CLASS – XII**  
**Chemistry (CODE :043)**

**Chapter 1**  
**Solutions**

| <b>Q. No.</b>       | <b>MCQ (multiple-choice questions) with Value Points<br/>(1 Mark each)</b>                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Main / Comptt With marks</b>               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>1</b>            | In case of association, abnormal molar mass of solute will<br>(A) Increase<br>(B) decrease<br>(C) remain same<br>(D) first increase and then decrease                                                                                                                                                                                                                                                                                                                      | <b>CBSE 2025</b>                              |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1</b>                                      |
| <b>2</b>            | An unripe mango placed in a concentrated salt solution to prepare pickle, shrivels because ____<br>(A) it gains water due to osmosis<br>(B) it loses water due to reverse osmosis<br>(C) it gains water due to reverse osmosis<br>(D) it loses water due to osmosis                                                                                                                                                                                                        | <b>CBSE 2025</b>                              |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1</b>                                      |
| <b>3</b>            | The value of KH at 298 K for Ar(g), CO <sub>2</sub> (g), HCHO(g) and CH <sub>4</sub> (g) are 40.32, 1.68, 1.84 x 10 <sup>-5</sup> and 0.416 kbar respectively. When these gases are arranged in increasing order of solubility, the correct order is :<br>(A) HCHO < CH <sub>4</sub> < CO <sub>2</sub> < Ar<br>(B) HCHO < CO <sub>2</sub> < CH <sub>4</sub> < Ar<br>(C) Ar < CO <sub>2</sub> < CH <sub>4</sub> < HCHO<br>(D) Ar < CH <sub>4</sub> < CO <sub>2</sub> < HCHO | <b>CBSE COMPTT. 2025</b>                      |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1</b>                                      |
| <b>4</b>            | A compound CaCl <sub>2</sub> . 6H <sub>2</sub> O undergoes complete dissociation in water. The Van't Hoff factor (i) is :<br>(A) 9<br>(B) 6<br>(C) 4<br>(D) 3                                                                                                                                                                                                                                                                                                              | <b>CBSE COMPTT. 2025</b>                      |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1</b>                                      |
| <b>5</b>            | An azeotropic mixture of two liquids has a boiling point higher than that of either of the two liquids when it<br>(A) obeys Raoult's law.<br>(B) shows positive deviation from Raoult's law.<br>(C) shows negative deviation from Raoult's law.                                                                                                                                                                                                                            | <b>CBSE 2025 (Visually impaired students)</b> |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                     | (D) obeys Henry's law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                |
| <b>6</b>            | Solubility of gases in liquid decreases with increase in<br>(A) pressure<br>(B) volume<br>(C) number of solute particles<br>(D) temperature                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CBSE 2025</b><br><b>(Visually impaired students)</b> |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                |
| <b>7</b>            | Isotonic solutions have the same<br>(A) density<br>(B) refractive index<br>(C) osmotic pressure<br>(D) volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CBSE 2024</b>                                        |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                |
| <b>8</b>            | Van't Hoff factor for $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ solution, assuming complete ionization is<br>(A) 1<br>(B) 3<br>(C) 13<br>(D) 2                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>CBSE 2024</b>                                        |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                |
| <b>9</b>            | Low concentration of oxygen in the blood and tissues of people living at high altitudes is due to :<br>(A) Low temperature<br>(B) Low atmospheric pressure<br>(C) High atmospheric pressure<br>(D) High temperature                                                                                                                                                                                                                                                                                                                                                              | <b>CBSE 2024</b><br><b>(Visually impaired students)</b> |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                |
|                     | For following question, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true. |                                                         |
| <b>1</b>            | <b>Assertion (A) :</b> When $\text{NaCl}$ is added to water, a depression in freezing point is observed.<br><b>Reason (R) :</b> The lowering of vapour pressure of a solution causes depression in the freezing point.                                                                                                                                                                                                                                                                                                                                                           | <b>CBSE 2024</b><br><b>(Visually impaired students)</b> |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                |



| Case based questions with Value Points (4 marks)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                      | <p>The cause for deviation from Raoult's law in the colligative properties of non-ideal solutions lie in the nature of interactions at the molecular level. These properties show deviations from Raoult's law due to difference in interactions between solute – solvent, solute – solute and solvent – solvent. Some liquids on mixing, form azeotropes which are binary mixtures having the same composition in liquid and vapour phase and boil at a constant temperature. In such cases, it is not possible to separate the components by fractional distillation. There are two types of azeotropes called minimum boiling azeotrope and maximum boiling azeotrope.</p> <p>Answer the following questions :</p> <p>(a) Pure ethanol cannot be prepared by fractional distillation of ethanol – water mixture. Comment.</p> <p>(b) Why does a mixture of chloroform and acetone show deviation from ideal behaviour ?</p> <p>(c) (i) The vapour pressure of pure benzene at a certain temperature is 1.25 atm. When 1.2 g of non-volatile, non-electrolyte solute is added to 60 g of benzene (<math>M = 78 \text{ g mol}^{-1}</math>), the vapour pressure of the solution becomes 1.237 atm. Calculate the molar mass of the non-volatile solute.</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) (ii) The boiling point of benzene is 353.23 K. When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K. Calculate the molar mass of the solute. <math>K_b</math> for benzene is 2.53 K <math>\text{kg mol}^{-1}</math>.</p> | CBSE<br>COMPTT.<br>2024                                                                                                                        |
| Value points                                           | <p>(a) Ethanol-water forms azeotropic mixture.</p> <p>(b) Due to the formation of hydrogen bond between chloroform and acetone.</p> <p>(c) (i) <math display="block">\frac{P^0 - P}{P^0} = x_2 = \frac{w_2}{M_2} \times \frac{M_1}{w_1}</math></p> $\frac{1.25 - 1.237}{1.25} = \frac{1.2}{M_2} \times \frac{78}{60}$ $M_2 = \frac{1.2}{\frac{1.25 - 1.237}{1.25}} \times \frac{78}{60} = 150 \text{ g mol}^{-1}$ <p>(c) (ii) The elevation (<math>\Delta T_b</math>) in the boiling point = 354.11 K – 353.23 K = 0.88 K</p> $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$ |
| Long answer type questions with Value Points (5 marks) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
| 1                                                      | <p>(i) Define osmotic pressure. Why is it considered as a colligative property ?</p> <p>(ii) The vapour pressure of two pure liquids A and B at 400 K are 450 and 700 mmHg respectively. Find out the composition of liquid mixture if the total vapour pressure of mixture is 600 mmHg.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBSE<br>COMPTT.<br>2025                                                                                                                        |
| Value points                                           | (i) The extra pressure applied on the solution side, which just stops the flow of solvent across the semipermeable membrane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                              |

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|              | <p>Because it depends on concentration or the number of moles of solute particles.</p> <p>(ii)</p> $P_t = P_A^\circ x_A + P_B^\circ x_B$ $P_t = P_A^\circ (1 - x_B) + P_B^\circ x_B$ $600 = 450 (1 - x_B) + 700 x_B$ $x_B = 0.6$ $x_A = 1 - x_B$ $x_A = 0.4$                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1                              |
| 2            | <p>(i) What type of deviation from Raoult's law is expected when phenol and aniline are mixed with each other? What change in the net volume of the mixture and enthalpy is expected?</p> <p>(ii) Boiling point of water at 750 mmHg is 99.48°C. How much sucrose (<math>M = 342 \text{ g mol}^{-1}</math>) is to be added to 500 g of water such that it boils at 100°C?<br/>[<math>K_b</math> for water = 0.52 K kg mol<math>^{-1}</math>]</p>                                                                                                                             | CBSE<br>COMPTT.<br>2025                            |
| Value points | <p>(i) Negative deviation<br/>Volume of the mixture decreases<br/><math>\Delta H = -ve</math>.</p> <p>(ii)</p> $\Delta T_b = 100 - 99.48 = 0.52$ $\Delta T_b = K_b \cdot m$ $0.52 = 0.52 \times \frac{W_B}{M_B} \times \frac{1000}{W_A}$ $W_B = \frac{342}{1000} \times \frac{500}{1}$ $= 171 \text{ g.}$                                                                                                                                                                                                                                                                    | 1<br>$\frac{1}{2} + \frac{1}{2}$<br>1<br>1<br>1    |
| 3            | <p>(a) Calculate the boiling point of solution when 6 g of MgSO<sub>4</sub> (Molar mass = 120 g mol<math>^{-1}</math>) was dissolved in 200 g of water, assuming the complete dissociation of MgSO<sub>4</sub>. (<math>K_b</math> for water = 0.52 K kg mol<math>^{-1}</math>).</p> <p>(b) State Raoult's law for a solution containing volatile components.<br/>How Raoult's law is a special case of Henry's law?</p>                                                                                                                                                      | CBSE<br>2025<br>(Visually<br>impaired<br>students) |
| Value points | <p>a) <math>i=2</math><br/> <math display="block">\Delta T_b = \frac{i \times K_b \times w_B \times 1000}{M_B \times w_A}</math> <math display="block">= \frac{2 \times 0.52 \times 6 \times 1000}{120 \times 200}</math> <math display="block">= 0.26 \text{ K}</math> <math display="block">\Delta T_b = T_b - T_b^\circ</math> <math display="block">0.26 = T_b - 373.15</math> <math display="block">T_b = 373.41 \text{ K}</math> <b>OR</b> <math display="block">0.26 = T_b - 100^\circ\text{C}</math> <math display="block">T_b = 100.26^\circ\text{C}</math> b) </p> | $\frac{1}{2}$<br>$\frac{1}{2}$<br>1<br>1           |

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                 | <ul style="list-style-type: none"> <li>For a solution of volatile liquids, the partial vapour pressure of each component of the solution is directly proportional to its mole fraction present in solution.</li> <li><math display="block">p = p^0 x ; \quad p = K_H x</math><br/>When <math>p^0 = K_H</math><br/><math>p \propto c</math> for both.</li> </ul>                                                                                                                                                                                                                                | 1<br>1                                             |
| 4               | <p>(a) The freezing point of a solution containing 5 g of benzoic acid (Molar mass = 122 g mol<sup>-1</sup>) in 35 g of benzene is depressed by 2.94 K. Calculate the percentage association of benzoic acid if it forms a dimer in solution. (<math>K_f</math> for benzene = 4.9 K kg mol<sup>-1</sup>)</p> <p>(b) Define the following terms :</p> <ol style="list-style-type: none"> <li>Ideal Solution</li> <li>Osmotic Pressure</li> </ol>                                                                                                                                                | CBSE<br>2025<br>(Visually<br>impaired<br>students) |
| Value<br>points | <p>a) <math display="block">\Delta T_f = \frac{i \times K_f \times w_B \times 1000}{M_B \times w_A}</math></p> $2.94 = \frac{i \times 4.9 \times 5 \times 1000}{122 \times 35}$ $i = \frac{2.94 \times 122 \times 35}{4.9 \times 5 \times 1000}$ $i = 0.512$ $\alpha = \frac{i-1}{1/n-1}$ $= \frac{0.512-1}{\frac{1}{2}-1}$ $= 0.976$ $\alpha (\%) = 97.6\%$ <p>b) i) The solutions which obey Raoult's law over the entire range of concentration.</p> <p>ii) Extra(excess) pressure which needs to be applied to a solution to stop the flow of solvent across a semipermeable membrane.</p> | ½<br>½<br>½<br>½<br>1<br>1<br>1                    |
| 5               | <p>(i) Ishan's automobile radiator is filled with 1.0 kg of water. How many grams of ethylene glycol (Molar mass = 62 g mol<sup>-1</sup>) must Ishan add to get the freezing point of the solution lowered to <math>-2.8^\circ\text{C}</math>. (<math>K_f</math> for water is 1.86 K kg mol<sup>-1</sup>).</p> <p>(ii) What type of deviation from Raoult's law is shown by ethanol and acetone mixture? Give reason.</p>                                                                                                                                                                      | CBSE<br>2024                                       |
| Value<br>points | <p>(i) <math>\Delta T_f = 2.8^\circ\text{C}</math></p> $\Delta T_f = K_f \times w_B / M_B \times W_A (\text{kg})$ $2.8 = 1.86 \times w_B / 62 \times 1$ $w_B = (2.8 \times 62) / 1.86$ $w_B = 93.33 \text{ g}$ <p>(ii) Positive deviation<br/>Interaction between ethanol-ethanol is stronger than ethanol- acetone</p>                                                                                                                                                                                                                                                                        | 1<br>1<br>1<br>1<br>1<br>1                         |
| 6               | <p>(i) Boiling point of water at 750 mm Hg pressure is <math>99.68^\circ\text{C}</math>. How much sucrose (Molar mass = 342 g mol<sup>-1</sup>) is to be added to 500 g of water such that it boils at <math>100^\circ\text{C}</math>? (<math>K_b</math> for water = 0.52 K kg mol<sup>-1</sup>).</p> <p>(ii) State Henry's law and write its any one application.</p>                                                                                                                                                                                                                         | CBSE<br>2024                                       |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <b>Value points</b> | <p>(i) <math>\Delta T_b = 100 - 99.68^\circ C = 0.32^\circ C</math></p> $\Delta T_b = K_b \times w_B / M_B \times W_A \text{ (kg)}$ $0.32 = 0.52 \times w_B \times 1000 / 342 \times 500$ $w_B = 0.32 \times 342 / 0.52 \times 2 = 105.23 \text{ g}$ <p>(ii) At a constant temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution/ The partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (c) in the solution.</p> <p><b>Application:</b> To increase the solubility of <math>CO_2</math> in soft drinks and soda water, the bottle is sealed under high pressure.</p> | <b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|

## Chapter 2

### Electrochemistry

| Q. No.       | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Main / Comptt With marks               |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1            | <p>Standard electrode potential for <math>\text{Sn}^{4+}/\text{Sn}^{2+}</math> couple is +0.15 V and that for the <math>\text{Cr}^{3+}/\text{Cr}</math> couple is —0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be</p> <p>(A) +1.19 V<br/>(B) +0.89 V<br/>(C) +0.18 V<br/>(D) +1.83 V</p>                                                                                                                                                                   | CBSE 2025                              |
| Value points | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |
| 2            | <p>A conductivity cell contains electrodes made up of :</p> <p>(A) Silver<br/>(B) Copper<br/>(C) Platinum<br/>(D) Zinc</p>                                                                                                                                                                                                                                                                                                                                                                                            | CBSE COMPTT. 2025                      |
| Value points | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |
| 3            | <p>The standard electrode potential of 'A', 'B' and 'C' are + 0.68 V, - 2.54 V and - 0.50 V respectively. The order of their reducing power is :</p> <p>(A) A &gt; B &gt; C<br/>(B) A &gt; C &gt; B<br/>(C) B &gt; C &gt; A<br/>(D) C &gt; B &gt; A</p>                                                                                                                                                                                                                                                               | CBSE COMPTT. 2025                      |
| Value points | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |
| 4            | <p>Kohlrausch gave the following relation for strong electrolytes at low concentration :</p> $\Lambda_m = \Lambda_m^0 - A \cdot \frac{1}{C}$ <p>Which of the following equality holds true ?</p> <p>(A) <math>\Lambda_m = \Lambda_m^0 - \text{as } C \rightarrow \infty</math><br/>(B) <math>\Lambda_m = \Lambda_m^0 - \text{as } C \rightarrow 0</math><br/>(C) <math>\Lambda_m = \Lambda_m^0 - \text{as } C \rightarrow \infty</math><br/>(D) <math>\Lambda_m = \Lambda_m^0 - \text{as } C \rightarrow 1</math></p> | CBSE 2025 (Visually impaired students) |
| Value points | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |
| 5            | <p><math>\Delta_f G^0</math> and <math>E^0_{\text{cell}}</math> for a spontaneous reaction will respectively be</p> <p>(A) positive and positive<br/>(B) positive and negative<br/>(C) negative and positive<br/>(D) negative and negative</p>                                                                                                                                                                                                                                                                        | CBSE 2025 (Visually impaired students) |
| Value points | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |

|                                                                 |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 6                                                               | Which of the following cell was used in Apollo space programme ?<br>(A) Mercury cell<br>(B) H <sub>2</sub> – O <sub>2</sub> fuel cell<br>(C) Dry cell<br>(D) Ni-Cd cell                                                                                                                                                                             | CBSE<br>2024                                                                                                                     |
| Value points                                                    | (B)                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                |
| 7                                                               | Dilution affects both conductivity as well as molar conductivity. Effect of dilution on both is as follows:<br>(A) both increase with dilution.<br>(B) both decrease with dilution.<br>(C) conductivity increases whereas molar conductivity decreases on dilution.<br>(D) conductivity decreases whereas molar conductivity increases on dilution. | CBSE<br>2024                                                                                                                     |
| Value points                                                    | (D)                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                |
| 8                                                               | The quantity of charge required to obtain one mole of Al from Al <sub>2</sub> O <sub>3</sub> is :<br>(A) 1 F<br>(B) 6 F<br>(C) 3 F<br>(D) 2 F                                                                                                                                                                                                       | CBSE<br>2024<br>(Visually<br>impaired<br>students)                                                                               |
| Value points                                                    | (C)                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                |
| <b>Short answers type questions with Value Points (2 marks)</b> |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |
| 1                                                               | Visha diluted the solutions of two electrolytes 'A' and 'B'. She observed that $\Lambda_m$ of 'A' increased 28 times whereas $\Lambda_m$ of 'B' increased 1.8 times. Which of the two is a strong electrolyte ? Justify your answer by graphically explaining the behaviour of 'A' and 'B'.                                                         | CBSE<br>COMPTT.<br>2025                                                                                                          |
| Value points                                                    | 'B'<br>On dilution, there is a slight increase in the number of ions of strong electrolytes whereas in weak electrolytes, the number of ions increases to a greater extent.                                                                                                                                                                         | 1<br><br><br><br>$\frac{1}{2} + \frac{1}{2}$ |
| 2                                                               | Define Fuel cell. Write two advantages of fuel cell over ordinary cell.                                                                                                                                                                                                                                                                             | CBSE<br>COMPTT.<br>2025                                                                                                          |
| Value points                                                    | A Galvanic cell which converts the energy of combustion of fuel directly into electrical energy.<br>High efficiency, pollution free.                                                                                                                                                                                                                | 1<br><br>$\frac{1}{2} + \frac{1}{2}$                                                                                             |
| 3                                                               | Predict the products of electrolysis in each of the following :<br>(i) A dilute solution of H <sub>2</sub> SO <sub>4</sub> with platinum electrodes<br>(ii) An aqueous solution of CuCl <sub>2</sub> with platinum electrodes                                                                                                                       | CBSE<br>COMPTT.<br>2025                                                                                                          |
| Value points                                                    | (i) H <sub>2</sub> at cathode, O <sub>2</sub> at anode<br>(ii) Cu at cathode, Cl <sub>2</sub> at anode                                                                                                                                                                                                                                              | 1<br>1                                                                                                                           |



| Short answers type questions with Value Points (3 marks) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>1</b>                                                 | <p>(a) State the following :</p> <p>(i) Kohlrausch law of independent migration of ions and<br/>(ii) Faraday's first law of electrolysis.</p> <p>(b) Using <math>E^\circ_{\text{values}}</math> of X and Y given below, predict which is better for coating the surface of iron to prevent corrosion and why ?</p> $E^\circ_{\text{y2+/y}} = -0.14 \text{ V}$ $E^\circ_{\text{z2+/z}} = -0.44 \text{ V}$                                                                                    | <b>CBSE<br/>2025</b>                                          |
| <b>Value points</b>                                      | <p>(a) (i) The limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.</p> <p>(ii) The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte.</p> <p>(b) 'X' is better, as X has more negative electrode potential than Fe / X has more oxidation potential than Fe.</p> | <b>1</b><br><b>1</b><br><b>1</b>                              |
| <b>2</b>                                                 | <p>Calculate emf of the following cell at 298 K :</p> $\text{Mg(s)} \text{Mg}^{2+} (0.001 \text{ M})\text{y}\text{Cu}^{2+} (0.0001 \text{ M}) \text{Cu(s)}$ <p>Given : <math>E^\circ_{\text{cell}} = 2.71 \text{ V}</math>, <math>\log 10 = 1</math></p>                                                                                                                                                                                                                                    | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value points</b>                                      | $E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{2} \log \frac{[\text{Mg}^{2+}]}{[\text{Cu}^{2+}]}$ $E_{\text{cell}} = 2.71 - \frac{0.059}{2} \log \frac{[0.001]}{[0.0001]}$ $E_{\text{cell}} = 2.71 - \frac{0.059}{2} \log 10$ $E_{\text{cell}} = 2.71 - 0.0295$ $E_{\text{cell}} = 2.68 \text{ V}$                                                                                                                                                                                 | <b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                  |
| <b>3</b>                                                 | <p>Calculate <math>D_rG^\circ</math> and <math>\log K_C</math> for the following cell at 25°C :</p> $\text{Zn(s)} \mid \text{Zn}^{2+} \parallel \text{Cd}^{2+} \mid \text{Cd (s)}$ <p>Given that :</p> $E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \text{ V}, \quad E^\circ_{\text{Cd}^{2+}/\text{Cd}} = 0.40 \text{ V}$ $1 \text{ F} = 96500 \text{ C mol}^{-1}$                                                                                                                           | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b>                                      | $E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}$ $= 0.40 - (-0.76) \text{ V}$ $= 1.16 \text{ V}$ $\Delta G^\circ = -n \text{ F} E^\circ_{\text{cell}}$ $= -2 \times 96500 \times 1.16$ $= -223880 \text{ J mol}^{-1} \text{ or } -223.880 \text{ kJ mol}^{-1}$ $\log K_C = \frac{n}{0.059} E^\circ_{\text{cell}}$ $= \frac{2 \times 1.16}{0.059}$ $= 39.322$                                                                                                     | <b>1/2</b><br><b>1</b><br><b>1/2</b><br><b>1</b>              |
| <b>4</b>                                                 | <p>Calculate the emf of the following cell:</p> $\text{Ni(s)} + 2\text{Ag}^+ (0.01 \text{ M}) \rightarrow \text{Ni}^{2+} (0.1 \text{ M}) + 2\text{Ag(s)}$ <p>Given that <math>E^\circ_{\text{cell}} = 1.05 \text{ V}</math>, <math>\log 10 = 1</math></p>                                                                                                                                                                                                                                   | <b>CBSE<br/>2024</b>                                          |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| <b>Value points</b> | $E_{\text{cell}}^{\circ} = 1.05 \text{ V}$ $E_{\text{cell}} = 1.05 - \frac{0.059}{2} \log \frac{[Ni]^{2+}}{[Ag+]^2}$ $= 1.05 - 0.059/2 \log \frac{(0.1)}{(0.01)^2}$ $= 1.05 - 0.0825$ $= 0.9615 \text{ V}$                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1                 |
| <b>5</b>            | The electrical resistance of a column of 0.05 M NaOH solution of cell constant 50 cm <sup>-1</sup> is 4.5 x 10 <sup>3</sup> ohm. Calculate its resistivity, conductivity and molar conductivity.                                                                                                                                                                                                                                                                                                                          | <b>CBSE<br/>COMPTT.<br/>2024</b> |
| <b>Value points</b> | <p><b>Resistivity:</b></p> $\rho = \frac{RA}{l}$ $\rho = \frac{4.5 \times 10^3}{50}$ $\rho = 0.09 \times 10^3 \Omega \text{ cm or } 90 \Omega \text{ cm}$ <p><b>Conductivity:</b></p> $k = 1/\rho$ $= 1/90$ $k = 0.011 \Omega^{-1} \text{ cm}^{-1} \text{ or } 0.011 \text{ S cm}^{-1}$ <p><b>Molar Conductivity</b></p> $\Lambda_m = k \times 1000 \text{ S cm}^2 \text{ mol}^{-1}$ $= \frac{0.0110 \times 1000}{0.05}$ $= 220 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1} \text{ or } 220 \text{ Scm}^2 \text{ mol}^{-1}$ | 1<br>1<br>1                      |
| <b>1</b>            | <b>Long answer type questions with Value Points (5 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
|                     | (a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
|                     | Sn(s)   Sn <sup>2+</sup> (0.004 M)    H <sup>+</sup> (0.02 M)   H <sub>2</sub> (g) (1 Bar)   Pt (s)                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
|                     | (Given : E <sub>Sn 2+/Sn</sub> = -0.14 V, E <sub>H+/H2(a), pt</sub> = 0.00V)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|                     | (b) Account for the following ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                     | (i) On the basis of E <sup>o</sup> values, O <sub>2</sub> gas should be liberated at anode                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                     | but it is Cl <sub>2</sub> gas which is liberated in the electrolysis of aqueous NaCl.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
|                     | (ii) Conductivity of CH <sub>3</sub> COOH decreases on dilution.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| <b>Value points</b> | (a) The cell reaction is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2                              |
|                     | Sn(s) + 2H <sup>+</sup> (aq) → Sn <sup>2+</sup> (aq) + H <sub>2</sub> (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                     | $E_{\text{Cell}} = (E_{\text{c}}^{\circ} - E_{\text{a}}^{\circ}) - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^+]^2}$                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                     | $= [(0) - (-0.14)] - \frac{0.059}{2} \log \frac{0.004}{(0.02)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                |
|                     | $= 0.14 - 0.0295 \log 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                |
|                     | $= 0.1105 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                     | (b) (i) overpotential of O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                |
|                     | (ii) Number of ions carrying current per unit volume decreases on dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                |

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 2            | <p>(a) Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use.</p> <p>(b) Calculate the potential for half-cell containing 0.01 M <math>\text{K}_2\text{Cr}_2\text{O}_7\text{(aq)}</math>, 0.01 M <math>\text{Cr}^{3+}\text{(aq)}</math> and <math>1.0 \times 10 \text{ M H}^+\text{(aq)}</math>. The half cell reaction is <math>\text{Cr}_2\text{O}_7^{2-}\text{(aq)} + 14\text{H}^+\text{(aq)} + 6\text{e}^- \rightarrow 2\text{Cr}^{3+}\text{(aq)} + 7\text{H}_2\text{O(l)}</math> and the standard electrode potential is given as <math>E^\circ = 1.33 \text{ V}</math>.<br/> [Given: <math>\log 10 = 1</math>]</p>                                                                                                                                                                                                                                                             | CBSE<br>2025                                   |
| Value points | <p>a) At Anode:</p> $\text{Pb} + \text{SO}_4^{2-} \rightarrow \text{PbSO}_4 + 2\text{e}^-$ <p>At cathode:</p> $\text{PbO}_2 + \text{SO}_4^{2-} + 4\text{H}^+ + 2\text{e}^- \rightarrow \text{PbSO}_4 + 2\text{H}_2\text{O}$ <p>Overall reaction:</p> $\text{Pb} + \text{PbO}_2 + 2 \text{SO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{PbSO}_4 + 2\text{H}_2\text{O}$ <p>b)</p> $E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{n} \log \left[ \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] [\text{H}^+]^{14}} \right]$ $E_{\text{cell}} = 1.33 - \frac{0.059}{6} \log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$ $= 1.33 - \frac{0.059}{6} (54) \log 10$ $= 1.33 - 0.059 \times 9$ $= 1.33 - 0.531$ $= 0.799 \vee$                                                                                                                                                                                                             | <b>1+1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
| 3            | <p>(i) What type of battery is the lead storage battery ? Write the anode and the cathode reactions and the overall reaction occurring in a lead storage battery when current is drawn from it.</p> <p>(ii) Calculate the time to deposit 1.5 g of silver at cathode when a current of 1.5 A was passed through the solution of <math>\text{AgNO}_3</math>.<br/> [Molar mass of Ag = <math>108 \text{ g mol}^{-1}</math>, <math>1 \text{ F} = 96500 \text{ C mol}^{-1}</math>]</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CBSE<br>COMPTT.<br>2024                        |
| Value points | <p>(i) Secondary cell /Battery</p> <p>At anode: <math>\text{Pb(s)} + \text{SO}_4^{2-}\text{(aq)} \rightarrow \text{PbSO}_4\text{(s)} + 2\text{e}^-</math></p> <p>At cathode: <math>\text{PbO}_2\text{(s)} + \text{SO}_4^{2-}\text{(aq)} + 4\text{H}^+\text{(aq)} + 2\text{e}^- \rightarrow \text{PbSO}_4\text{(s)} + 2\text{H}_2\text{O(l)}</math></p> <p><u>overall reaction <math>\text{Pb(s)} + \text{PbO}_2\text{(s)} + 2\text{H}_2\text{SO}_4\text{(aq)} \rightarrow 2\text{PbSO}_4\text{(s)} + 2\text{H}_2\text{O(l)}</math></u></p> <p>(ii) Reaction at Cathode: <math>\text{Ag}^+\text{(aq)} + \text{e}^- \rightarrow \text{Ag(s)}</math><br/> <math>108 \text{ g of Ag required} = 96500 \text{ C}</math><br/> <math>1.5 \text{ g of Ag required} = 96500 / 108 \times 1.51</math><br/> <math>= 1340.27 \text{ C}</math><br/> <math>\text{Time} = Q/I = 1340.27 / 1.5</math><br/> <math>= 893.51 \text{ s or } 14.85 \text{ min.}</math></p> | <b>1+1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
| 4            | <p>(i) State Kohlrausch's law of independent migration of ions. Molar conductivity at infinite dilution for <math>\text{NH}_4\text{Cl}</math>, <math>\text{NaOH}</math> and <math>\text{NaCl}</math> solution at 298 K are 110, 100 and <math>105 \text{ S cm}^2 \text{ mol}^{-1}</math> respectively. Calculate the molar conductivity of <math>\text{NH}_4\text{OH}</math> solution.</p> <p>(ii) Calculate <math>\Delta G^\circ</math> of the following cell at <math>25^\circ\text{C}</math> :</p> <p><math>\text{Zn (s)}   \text{Zn}^{2+}\text{(aq)}    \text{Cu}^{2+}\text{(aq)}   \text{Cu (s)}</math></p> <p>Given : <math>E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \text{ V}</math><br/> <math>E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.34 \text{ V}</math><br/> <math>1 \text{ F} = 96500 \text{ C mol}^{-1}</math></p>                                                                                                                     | CBSE<br>COMPTT.<br>2024                        |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| <b>Value points</b> | <p>(i) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.</p> $\Lambda^{\circ}_{\text{NH}_4\text{OH}} = \Lambda^{\circ}_{\text{NH}_4\text{Cl}} + \Lambda^{\circ}_{\text{NaOH}} - \Lambda^{\circ}_{\text{NaCl}}$ $= 110 + 100 - 105 \text{ S cm}^2 \text{ mol}^{-1}$ $= 105 \text{ S cm}^2 \text{ mol}^{-1}$ <p>(ii) <math>E_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}}</math></p> $= 0.34 - (-0.76 \text{ V})$ $= 1.10 \text{ V}$ $\Delta rG^{\circ} = -nFE_{\text{cell}}^{\circ}$ $= -2 \times 96500 \times 1.10$ $= -212,300 \text{ J mol}^{-1} \text{ or } -212.3 \text{ kJ mol}^{-1}$ | <b>1</b><br><b>1</b><br><b>1</b><br><b>1/2</b><br><b>1/2</b><br><b>1</b> |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|

### Chapter 3

### Chemical Kinetics

| Q. No.       | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Main / Comptt With marks                     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1            | If the half-life period of a first order reaction is 1386 s, then the rate constant of this reaction is<br>(A) $0.5 \times 10^{-2} \text{ s}^{-1}$<br>(B) $0.5 \times 10^{-3} \text{ s}^{-1}$<br>(C) $5 \times 10^{-2} \text{ s}^{-1}$<br>(D) $5 \times 10^{-3} \text{ s}^{-1}$                                                                                                                                                                                                                                                                                                  | CBSE<br>COMPTT.<br>2025                      |
| Value points | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 2            | The rate of reaction $\text{X} + \text{Y} \rightarrow \text{products}$ , is given by the equation<br>$\text{Rate} = k[\text{X}] [\text{Y}]$ .<br>If Y is taken in large excess, the order of the reaction would be<br>(A) 0<br>(B) 1<br>(C) 2<br>(D) $1/2$                                                                                                                                                                                                                                                                                                                       | CBSE<br>2025<br>(Visually impaired students) |
| Value points | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 3            | The rate of a reaction increases sixteen times when the concentration of the reactant increases four times. The order of the reaction is<br>(A) 2.5<br>(B) 2.0<br>(C) 1.5<br>(D) 0.5                                                                                                                                                                                                                                                                                                                                                                                             | CBSE<br>2024                                 |
| Value points | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 4            | For a chemical reaction, $\text{A} \rightarrow \text{B}$ , it was observed that the rate of reaction doubles when the concentration of A is increased four times. The order of the reaction is :<br>(A) 2<br>(B) 1<br>(C) $1/2$<br>(D) Zero                                                                                                                                                                                                                                                                                                                                      | CBSE<br>COMPTT.<br>2024                      |
| Value points | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
|              | For following question, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(C) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(D) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true. |                                              |

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1                                                               | <p><b>Assertion (A) :</b> The molecularity of the reaction <math>H_2 + Br_2 \rightarrow 2HBr</math> appears to be 2.</p> <p><b>Reason (R) :</b> Two molecules of the reactants are involved in the given elementary reaction.</p>                                                                                                                                                                                           | <b>CBSE COMPTT. 2025</b>                      |
| <b>Value points</b>                                             | (A)                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b>                                      |
| 2                                                               | <p><b>Assertion (A) :</b> In a first order reaction, if the concentration of the reactant is doubled, its half-life is also doubled.</p> <p><b>Reason (R) :</b> The half-life of a reaction does not depend upon the initial concentration of the reactant in a first order reaction.</p>                                                                                                                                   | <b>CBSE 2025 (Visually impaired students)</b> |
| <b>Value points</b>                                             | (D)                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b>                                      |
| 3                                                               | <p><b>Assertion (A):</b> The units of rate constant of a zero order reaction and rate of reaction are the same.</p> <p><b>Reason (R):</b> In zero order reaction, the rate of reaction is independent of the concentration of reactants.</p>                                                                                                                                                                                | <b>CBSE 2024</b>                              |
| <b>Value points</b>                                             | (A) Or (B)                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                      |
| 4                                                               | <p><b>Assertion (A) :</b> Rate constant increases with increase in temperature.</p> <p><b>Reason (R) :</b> Increasing the temperature of the substance increases the fraction of molecules, which collide with energies greater than activation energy.</p>                                                                                                                                                                 | <b>CBSE COMPTT. 2024</b>                      |
| <b>Value points</b>                                             | (A)                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b>                                      |
| <b>Short answers type questions with Value Points (2 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| 1                                                               | <p>By giving reasons, explain how the rate of the reaction for a given reaction will be affected when :</p> <p>(a) the temperature at which the reaction was taking place is decreased.</p> <p>(b) a catalyst is added.</p>                                                                                                                                                                                                 | <b>CBSE COMPTT. 2025</b>                      |
| <b>Value points</b>                                             | <p>(a)</p> <ul style="list-style-type: none"> <li>• Rate of reaction decreases on decreasing temperature.</li> <li>• Effective collisions decrease / Decrease in fraction of molecules having energy equal to or greater than <math>E_a</math>.</li> </ul> <p>(b)</p> <ul style="list-style-type: none"> <li>• Rate of reaction increases on adding a catalyst.</li> <li>• Due to lowering of activation energy.</li> </ul> | <b>1</b><br><b>1</b>                          |
| 2                                                               | <p>(a) A reaction is second order in 'A' and first order in 'B'. How is the rate affected when the concentrations of both 'A' and 'B' are doubled ?</p> <p>(b) Write the unit of 'k' for zero order reaction.</p>                                                                                                                                                                                                           | <b>CBSE 2025 (Visually impaired students)</b> |
| <b>Value points</b>                                             | <p>a) <math>Rate = k [A]^2 [B]</math><br/> <math>= k [2A]^2 [2B]</math><br/> <math>= 8</math> times</p> <p>b) <math>mol L^{-1} s^{-1} / mol L^{-1} \text{ time}^{-1}</math></p>                                                                                                                                                                                                                                             | <b>1</b><br><b>1</b>                          |
| 3                                                               | Show that in case of a first order reaction, the time taken for completion of 99% reaction is twice the time required for 90% completion of the reaction. ( $\log 10 = 1$ )                                                                                                                                                                                                                                                 | <b>CBSE 2024</b>                              |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>Value points</b> | $t_1 = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$ <p>Time required for the completion of 99% reaction</p> $t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$ $t_{99\%} = \frac{2.303}{k} \times 2$ <p>Time required for the completion of 90% reaction</p> $t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$ $t_{90\%} = \frac{2.303}{k} \log 10$ $t_{90\%} = \frac{2.303}{k}$ $\frac{t_{99\%}}{t_{90\%}} = \frac{\left(\frac{2.303}{k}\right) \times 2}{\frac{2.303}{k}}$ $\frac{t_{99\%}}{t_{90\%}} = 2$ $t_{99\%} = 2 \times t_{90\%}$ | $\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$<br>$\frac{1}{2}$ |
| <b>4</b>            | The thermal decomposition of an acid is a first order reaction with a rate constant of $2.3 \times 10^{-3} \text{ s}^{-1}$ at a certain temperature. Calculate how long it will take for three-fourths of the initial quantity of acid to decompose.<br>$(\log 4 = 0.6021, \log 2 = 0.301)$                                                                                                                                                                                                                                        | <b>CBSE<br/>COMPTT.<br/>2024</b>                                                  |
| <b>Value points</b> | $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$ $t = \frac{2.303}{k} \log \frac{[R]_0}{[R]_0/4}$ $t = \frac{2.303}{2.3 \times 10^{-3}} \log 4$ $t = \frac{2.303}{2.3 \times 10^{-3}} \log 0.6021$ $t = 602 \text{ s}$                                                                                                                                                                                                                                                                                                                 | $\frac{1}{2}$<br>$\frac{1}{2}$<br>$1$                                             |
| <b>1</b>            | <p><b>Short answers type questions with Value Points (3 marks)</b></p> <p>A certain reaction is 50% complete in 20 minutes at 300 K and the same reaction is 50% complete in 5 minutes at 350 K. Calculate the activation energy if it is a first order reaction.<br/> <math>[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}; \log 4 = 0.602]</math></p>                                                                                                                                                                              | <b>CBSE<br/>2025</b>                                                              |
| <b>Value points</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{2}$                                                                     |

|              | $t_{1/2} = \frac{0.693}{k}$ $k_1 = \frac{0.693}{20} = 0.03465 / 3.465 \times 10^{-2} \text{ min}^{-1}$ $k_2 = \frac{0.693}{5} = 0.1386 / 1.386 \times 10^{-1} \text{ min}^{-1}$<br>$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[ \frac{T_2 - T_1}{T_1 T_2} \right]$<br>$\log \frac{0.1386}{0.03465} = \frac{E_a}{2.303 \times 8.314} \frac{[350 - 300]}{[350 \times 300]}$ $\log 4 = \frac{E_a}{19.15} \frac{[50]}{[350 \times 300]}$ $E_a = 24209 \text{ J mol}^{-1} \text{ or } 24.209 \text{ kJ mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                                               | 1<br>½<br>½                                        |                                                       |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|---------------------|-------------------------------------------------------|---|------|------|----------------------|---|------|------|----------------------|---|------|------|----------------------|---|------|------|----------------------|-------------------------|
| 2            | <p>The following data were obtained during the kinetic studies of the reaction <math>A + 2B \rightarrow C + 2D</math></p> <table border="1" data-bbox="239 761 1203 1060"> <thead> <tr> <th>Experiment</th><th>Initial [A] (mol/L)</th><th>Initial [B] (mol/L)</th><th>Initial rate of formation of C (M min<sup>-1</sup>)</th></tr> </thead> <tbody> <tr> <td>1</td><td>0.10</td><td>0.10</td><td><math>3.0 \times 10^{-4}</math></td></tr> <tr> <td>2</td><td>0.30</td><td>0.30</td><td><math>9.0 \times 10^{-4}</math></td></tr> <tr> <td>3</td><td>0.10</td><td>0.30</td><td><math>3.0 \times 10^{-4}</math></td></tr> <tr> <td>4</td><td>0.20</td><td>0.40</td><td><math>6.0 \times 10^{-4}</math></td></tr> </tbody> </table> <p>Determine the order of reaction with respect to each reactant and the overall order of the reaction. Write the rate law expression for the reaction.</p> | Experiment                                         | Initial [A] (mol/L)                                   | Initial [B] (mol/L) | Initial rate of formation of C (M min <sup>-1</sup> ) | 1 | 0.10 | 0.10 | $3.0 \times 10^{-4}$ | 2 | 0.30 | 0.30 | $9.0 \times 10^{-4}$ | 3 | 0.10 | 0.30 | $3.0 \times 10^{-4}$ | 4 | 0.20 | 0.40 | $6.0 \times 10^{-4}$ | CBSE<br>COMPTT.<br>2025 |
| Experiment   | Initial [A] (mol/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial [B] (mol/L)                                | Initial rate of formation of C (M min <sup>-1</sup> ) |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
| 1            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10                                               | $3.0 \times 10^{-4}$                                  |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
| 2            | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30                                               | $9.0 \times 10^{-4}$                                  |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
| 3            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30                                               | $3.0 \times 10^{-4}$                                  |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
| 4            | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                                               | $6.0 \times 10^{-4}$                                  |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
| Value points | <p>Let the order w.r.t to A be x and y w.r.t to B</p> $\text{Rate} = k [A]^x [B]^y$ $3.0 \times 10^{-4} = k [0.10]^x [0.10]^y \quad \dots \dots \dots \quad (1)$ $9.0 \times 10^{-4} = k [0.30]^x [0.30]^y \quad \dots \dots \dots \quad (2)$ $3.0 \times 10^{-4} = k [0.10]^x [0.30]^y \quad \dots \dots \dots \quad (3)$ $6.0 \times 10^{-4} = k [0.20]^x [0.40]^y \quad \dots \dots \dots \quad (4)$ <p>Dividing Exp. (1) by (3)</p> $y = 0, \text{ the order w.r.t B is 0.}$ <p>Dividing Exp. (2) by (3)</p> $3 = 3^x$ <p>i.e., <math>x = 1</math>, order w.r.t A is 1.</p> <p>Overall order of the reaction = 1</p> $\text{Rate} = k [A]^1 [B]^0 / \text{Rate} = k [A]$                                                                                                                                                                                                                    | 1<br>1<br>1<br>1                                   |                                                       |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |
| 3            | <p>The rate constant of a first order reaction increases from <math>0.04 \text{ s}^{-1}</math> to <math>0.08 \text{ s}^{-1}</math> when the temperature increases from <math>27^\circ\text{C}</math> to <math>37^\circ\text{C}</math>. Calculate the energy of activation (<math>E_a</math>).</p> <p>[Given : <math>2.303R = 19.15 \text{ JK}^{-1}\text{mol}^{-1}</math>]<br/> <math>[\log 2 = 0.3010, \log 3 = 0.4771, \log 4 = 0.6021]</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBSE<br>2025<br>(Visually<br>impaired<br>students) |                                                       |                     |                                                       |   |      |      |                      |   |      |      |                      |   |      |      |                      |   |      |      |                      |                         |

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Value points | $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[ \frac{T_2 - T_1}{T_1 T_2} \right]$<br>$\log \frac{0.08}{0.04} = \frac{E_a}{19.15} \left[ \frac{310 - 300}{310 \times 300} \right]$ $\log 2 = \frac{E_a}{19.15} \left[ \frac{10}{310 \times 300} \right]$ $E_a = \frac{0.3010 \times 19.15 \times 310 \times 300}{10}$ $= 53606 \text{ J mol}^{-1} = 53.606 \text{ kJ mol}^{-1}$                                                                                                                                                                                                        | 1<br>1<br>1             |
| 4            | The rate constant of a reaction quadruples when the temperature changes from 300 K to 320 K. Calculate the activation energy for this reaction.<br>[ $\log 2 = 0.30$ , $\log 4 = 0.60$ , $2.303 R = 19.15 \text{ J K}^{-1} \text{ mol}^{-1}$ ]                                                                                                                                                                                                                                                                                                                                           | CBSE<br>2024            |
| Value points | $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left( \frac{T_2 - T_1}{T_1 T_2} \right)$ <p>It is given that, <math>k_2 = 4k_1</math></p> <p>Therefore, <math>\log \frac{4k_1}{k_1} = \frac{E_a}{2.303 \times R} \left( \frac{320 - 300}{320 \times 300} \right)</math></p> $\therefore 0.60 = \frac{20 \times E_a}{19.15 \times 320 \times 300}$ $\therefore E_a = \frac{0.60 \times 19.15 \times 320 \times 300}{20}$ $= 55152 \text{ J mol}^{-1} \text{ or}$ $= 55.152 \text{ kJ mol}^{-1}$                                                                                               | 1<br>1<br>1             |
| 5            | <p>Hydrolysis of sucrose takes place by the chemical reaction :</p> $\text{C}_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O} \text{ (excess)} \xrightarrow{\text{H}^+} \text{C}_6\text{H}_{12}\text{O}_6 + \text{C}_6\text{H}_{12}\text{O}_6$ <p>Based on the above reaction, write :</p> <ol style="list-style-type: none"> <li>Rate law equation</li> <li>Molecularity and order of reaction</li> <li>What do you call such reactions ?</li> </ol>                                                                                                                                | CBSE<br>COMPTT.<br>2024 |
| Value points | <ol style="list-style-type: none"> <li>Rate = <math>k [\text{C}_{12}\text{H}_{22}\text{O}_{11}]</math></li> <li>Molecularity = 2 and order = 1</li> <li>Pseudo first order reaction.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1             |
|              | <b>Case based questions with Value Points (4 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| 1            | The rate of a chemical reaction is expressed either in terms of decrease in the concentration of reactants or increase in the concentration of a product per unit time. Rate of the reaction depends upon the nature of reactants, concentration of reactants, temperature, presence of catalyst, surface area of the reactants and presence of light. Rate of reaction is directly related to the concentration of reactant. Rate law states that the rate of reaction depends upon the concentration terms on which the rate of reaction actually depends, as observed experimentally. | CBSE<br>2025            |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                     | <p>The sum of powers of the concentration of the reactants in the Rate law expression is called order of reaction while the number of reacting species taking part in an elementary reaction which must collide simultaneously in order to bring about a chemical reaction is called molecularity of the reaction.</p> <p>Answer the following questions :</p> <p>(a) (i) What is a rate determining step ?<br/> (ii) Define complex reaction.</p> <p>(b) What is the effect of temperature on the rate constant of a reaction ?</p> <p style="text-align: center;"><b>OR</b></p> <p>(b) Why is molecularity applicable only for elementary<br/> (c) The conversion of molecule X to Y follows second order kinetics. If concentration of X is increased 3 times, how will it affect the rate of formation of Y ?</p>                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |
| <b>Value points</b> | <p>(a) (i) Slowest step.<br/> (ii) Series of elementary reactions / Reactions involving two or more steps.</p> <p>(b) Increases with increase in temperature.</p> <p style="text-align: center;"><b>OR</b></p> <p>(b) Molecularity is defined only for elementary reactions whereas order is experimentally determined hence applicable for both / Because molecularity of each elementary reaction in complex reaction may be different and hence meaningless for overall complex reaction whereas order of a complex reaction is experimentally determined by the slowest step in its mechanism and is therefore applicable for both.</p> <p>(c) 9 times</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                  |
| <b>2</b>            | <p>Rate of reaction depends upon the experimental conditions such as concentration of reactants, temperature and catalyst. Mathematical representation of rate of a reaction is given by rate law :</p> $\text{Rate} = k [A]^p [B]^q$ <p>A balanced chemical equation never gives us a true picture of how a reaction takes place since rarely does a reaction get completed in one step. The reactions taking place in one step are called elementary reactions. When a sequence of elementary reactions give us the products, the reactions are called complex reactions. Order and molecularity of elementary reaction are same.</p> <p>(a) For a reaction A + B Product, the rate law is given by</p> $\text{Rate} = k [A]^1 [B]^{1/2}$ <p>What is the overall order of the reaction ?</p> <p>(b) How are order and molecularity different for complex reactions ?</p> <p>(c) For a first order reaction, show that the time required for 99% completion is twice the time required for the completion of 90% of reaction.<br/> [Given : <math>\log 10 = 1</math>]</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) What is meant by zero order reaction ? Give any one example of zero order reaction.</p> | <b>CBSE</b><br><b>2024</b><br><b>(Visually</b><br><b>impaired</b><br><b>students)</b> |
| <b>Value points</b> | <p>a)3/ 2</p> <p>b)Order is applicable to elementary as well as complex reactions whereas molecularity is applicable only for elementary reactions. For complex reaction molecularity has no meaning.</p> <p>c)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1</b><br><b>1</b>                                                                  |

$$t_1 = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

Time required for the completion of 99% reaction

$$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$$

$$t_{99\%} = \frac{2.303}{k} \times 2$$

Time required for the completion of 90% reaction

$$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$$

$$t_{90\%} = \frac{2.303}{k} \log 10$$

$$t_{90\%} = \frac{2.303}{k}$$

$$\frac{t_{99\%}}{t_{90\%}} = \frac{\left(\frac{2.303}{k}\right) \times 2}{\frac{2.303}{k}}$$

$$\frac{t_{99\%}}{t_{90\%}} = 2$$

$$t_{99\%} = 2 \times t_{90\%}$$

1

1

### OR

c) Zero-order reaction means that the rate of the reaction is independent of initial concentration of reactants. Example : Decomposition of gaseous ammonia on hot platinum surface

1

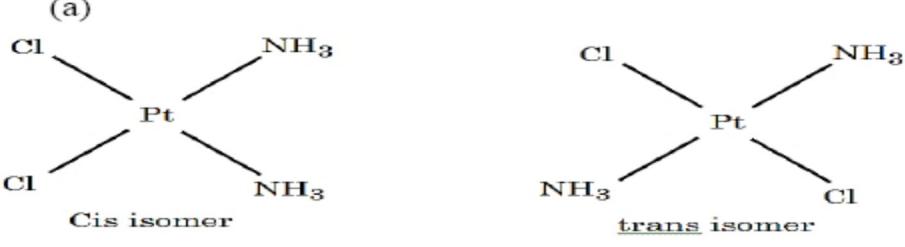
## -d & -f Block elements

| Q. No.              | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                                                                                 | Main / Comptt With marks                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| <b>1</b>            | The magnetic moment is associated with its spin angular momentum and orbital angular momentum. Spin only magnetic moment value of $\text{Cr}^{3+}$ ion (Atomic no. : Cr = 24) is _____<br>(A) 2.87 BM<br>(B) 3.87 BM<br>(C) 3.47 BM<br>(D) 3.57 BM | <b>CBSE 2025</b>                                 |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                | <b>1</b>                                         |
| <b>2</b>            | Acidified $\text{KMnO}_4$ oxidises sulphite to<br>(A) $\text{S}_2\text{O}_3^{2-}$<br>(B) $\text{S}_2\text{O}_8^{2-}$<br>(C) $\text{SO}_2(\text{g})$<br>(D) $\text{SO}_4^{2-}$                                                                      | <b>CBSE 2025</b>                                 |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                | <b>1</b>                                         |
| <b>3</b>            | The transition element which shows both +1 and +2 oxidation states is<br>(A) Sc<br>(B) Mn<br>(C) Cu<br>(D) Zn                                                                                                                                      | <b>CBSE 2025</b>                                 |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                | <b>1</b>                                         |
| <b>4</b>            | Which of the following transition metals does not show variable oxidation states?<br>(A) Cu<br>(B) Sc<br>(C) Ti<br>(D) Fe                                                                                                                          | <b>CBSE 2025</b><br>(Visually impaired students) |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                | <b>1</b>                                         |
| <b>5</b>            | Transition metals are known to make interstitial compounds. Formation of interstitial compounds makes the transition metal<br>(A) more hard<br>(B) more soft<br>(C) more ductile<br>(D) more metallic                                              | <b>CBSE 2024</b>                                 |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                | <b>1</b>                                         |
| <b>6</b>            | Out of $\text{Fe}^{2+}$ , $\text{Co}^{2+}$ , $\text{Cr}^{3+}$ , $\text{Ni}^{2+}$ , the one which shows highest magnetic moment is :                                                                                                                | <b>CBSE</b>                                      |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                     | <p>(A) <math>\text{Fe}^{2+}</math><br/>         (B) <math>\text{Co}^{2+}</math><br/>         (C) <math>\text{Cr}^{3+}</math><br/>         (D) <math>\text{Ni}^{2+}</math></p> <p>[Atomic number : Cr = 24, Fe = 26, Co = 27, Ni = 28]</p>                                                                                                                                                                                                                                                                                                                                                 | <b>COMPTT. 2024</b>                           |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>7</b>            | Which of the following oxidation state is common for all lanthanoids ?<br>(A) + 2<br>(B) + 4<br>(C) + 6<br>(D) + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>CBSE 2024 (Visually impaired students)</b> |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>8</b>            | Which of the following ions has the electronic configuration $3d^3$ ?<br>[Atomic number : Cr = 24, Mn = 25, Fe = 26, Co = 27]<br>(A) $\text{Cr}^{3+}$<br>(B) $\text{Mn}^{3+}$<br>(C) $\text{Fe}^{3+}$<br>(D) $\text{Co}^{3+}$                                                                                                                                                                                                                                                                                                                                                             | <b>CBSE 2022 (Visually impaired students)</b> |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
|                     | For questions number 1 to 4 below, two statements are given —one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true |                                               |
| <b>1</b>            | <b>Assertion (A) :</b> Actinoids show a wide range of oxidation states.<br><b>Reason (R) :</b> Actinoids are radioactive in nature.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>CBSE COMPTT. 2025</b>                      |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>2</b>            | <b>Assertion (A) :</b> Zinc is not regarded as a transition element.<br><b>Reason (R) :</b> Zinc has completely filled 3d orbitals in its ground state as well as in its oxidised state.                                                                                                                                                                                                                                                                                                                                                                                                  | <b>CBSE 2025 (Visually impaired students)</b> |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>3</b>            | <b>Assertion (A) :</b> Zr and Hf are of almost similar atomic radii.<br><b>Reason (R) :</b> This is due to lanthanoid contraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>CBSE 2024</b>                              |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>4</b>            | <b>Assertion (A) :</b> $\text{Cu}^{2+}$ iodide is not known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>CBSE</b>                                   |

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                 | <b>Reason (R) :</b> Cu <sup>2+</sup> has strong tendency to oxidise I <sup>-</sup> to iodine.                                                                                                                                                                                                                                                                                                                                                                        | <b>COMPTT. 2024</b>                              |
| <b>Value points</b>                                             | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                         |
| <b>Short answers type questions with Value Points (2 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| <b>1</b>                                                        | Complete and balance the following chemical equations :<br>(a) 2MnO <sub>4</sub> <sup>-</sup> (aq) + 10 I <sup>-</sup> (aq) + 16H <sup>+</sup> (aq) →<br>(b) Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> (aq) + 6Fe <sup>2+</sup> (aq) + 14H <sup>+</sup> (aq) →                                                                                                                                                                                                    | <b>CBSE 2025</b>                                 |
| <b>Value points</b>                                             | (a) 10I <sup>-</sup> + 2MnO <sub>4</sub> <sup>-</sup> + 16H <sup>+</sup> → 2Mn <sup>2+</sup> + 8H <sub>2</sub> O + 5I <sub>2</sub><br>(b) Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 14 H <sup>+</sup> + 6 Fe <sup>2+</sup> → 2 Cr <sup>3+</sup> + 6 Fe <sup>3+</sup> + 7 H <sub>2</sub> O                                                                                                                                                                       | <b>1+1</b>                                       |
| <b>Short answers type questions with Value Points (3 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| <b>1</b>                                                        | The elements of 3d transition series are given as :<br>Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn<br>Answer the following :<br>(a) Copper has exceptionally positive E <sup>o</sup> M <sub>2+</sub> /M value, why ?<br>(b) Which element is a strong reducing agent in +2 oxidation state and why ?<br>(c) Zn <sup>2+</sup> salts are colourless. Why ?                                                                                                                   | <b>CBSE 2025</b>                                 |
| <b>Value points</b>                                             | (a) Its high D <sub>a</sub> H <sup>o</sup> and low D <sub>hyd</sub> H <sup>o</sup> .<br>(b) Cr<br>Cr <sup>3+</sup> (d <sup>4</sup> to d <sup>3</sup> ) / stable half-filled t <sub>2g</sub> level<br>(c) Fully-filled d-orbitals hence no d-d transition / due to the absence of unpaired electron.                                                                                                                                                                  | <b>1</b><br><b>1/2</b><br><b>1/2</b><br><b>1</b> |
| <b>Long answer type questions with Value Points (5 marks)</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| <b>1</b>                                                        | (i) Write the chemical equations involved in the preparation of potassium permanganate from pyrolusite ore (MnO <sub>2</sub> ).<br>(ii) Give reasons for the following :<br>(I) Sc (Atomic No. 21) salts are white.<br>(II) E <sup>o</sup> Cu <sub>2+</sub> /Cu is positive whereas E <sup>o</sup> Mn <sub>2+</sub> / is negative.<br>(III) Transition metals have high enthalpies of atomisation.                                                                   | <b>CBSE COMPTT. 2025</b>                         |
| <b>Value points</b>                                             | (i) 3MnO <sub>4</sub> <sup>2-</sup> + 4H <sup>+</sup> → 2MnO <sub>4</sub> <sup>-</sup> + MnO <sub>2</sub> + 2H <sub>2</sub> O<br>2MnO <sub>2</sub> + 4KOH + O <sub>2</sub> → 2K <sub>2</sub> MnO <sub>4</sub> + 2H <sub>2</sub> O                                                                                                                                                                                                                                    | <b>1+1</b>                                       |
|                                                                 | (ii) (I) Due to the absence of unpaired electrons in d-orbitals. / no d-d transition.<br>(II) Due to the low D <sub>hyd</sub> H <sup>o</sup> and high D <sub>a</sub> H <sup>o</sup> of Cu <sup>2+</sup> , whereas Mn <sup>2+</sup> has lower D <sub>a</sub> H <sup>o</sup> as well as lower D <sub>hyd</sub> H <sup>o</sup><br>(III) Due to the presence of a greater number of unpaired electrons, resulting in strong interatomic interactions / metallic bonding. | <b>1</b><br><b>1</b><br><b>1</b>                 |
| <b>2</b>                                                        | (i) Complete and balance the following chemical equations :                                                                                                                                                                                                                                                                                                                                                                                                          | <b>CBSE</b>                                      |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                     | <p>(I) <math>\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + \text{H}_2\text{S}(\text{g}) + \text{H}^+(\text{aq}) \rightarrow</math><br/>         (II) <math>\text{Cu}^{2+}(\text{aq}) + \text{I}^-(\text{aq}) \longrightarrow</math></p> <p>(ii) Give reasons :</p> <p>(I) Separation of mixture of lanthanoids is difficult.<br/>         (II) Chromium has higher melting point than manganese.<br/>         (III) It is difficult to obtain oxidation state greater than two for Zn</p>                                                                                                                                                                                                                                                                             | <b>COMPTT. 2025</b>                            |
| <b>Value points</b> | <p>(i) (I) <math>\text{Cr}_2\text{O}_7^{2-} + 8\text{H}^+ + 3\text{H}_2\text{S} \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O} + 3\text{S}</math></p> <p>(II) <math>2\text{Cu}^{2+} + 4\text{I}^- \rightarrow \text{Cu}_2\text{I}_{2(\text{s})} + \text{I}_2</math></p> <p>(ii) (I) Due to lanthanoid contraction.<br/>         (II) Due to more number of unpaired electrons from ns and (n-1)d in chromium as compared to manganese.<br/>         (III) Due to the higher value of the third ionisation enthalpy of zinc.</p>                                                                                                                                                                                                                              | <b>1+1</b>                                     |
| <b>3</b>            | <p>(a) Account for the following :</p> <p>(i) Transition metals and their compounds show catalytic activities.<br/>         (ii) <math>\text{Mn}^{3+}</math> is a strong oxidising agent.<br/>         (iii) <math>\text{Cu}^+</math> is not stable in aqueous solution.</p> <p>(b) Write the preparation of <math>\text{KMnO}_4</math> from Pyrolusite ore (<math>\text{MnO}_2</math>).</p>                                                                                                                                                                                                                                                                                                                                                                    | <b>CBSE 2025 (Visually impaired students)</b>  |
| <b>Value points</b> | <p>(a) i) They have the ability to exhibit variable oxidation states/ tendency to form complex compounds/ provide large surface area.<br/>         ii) Because <math>\text{Mn}^{+2}</math> is more stable in +2 due to stable <math>3d^5</math> configuration.<br/>         iii) Because it undergoes disproportionation reaction</p> <p>(b)</p> $2\text{MnO}_2 + 4\text{KOH} + \text{O}_2 \rightarrow 2\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}$ $3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$                                                                                                                                                                                                       | <b>1</b><br><b>1</b><br><b>1</b><br><b>1+1</b> |
| <b>4</b>            | <p>(i) Write the preparation of <math>\text{Na}_2\text{Cr}_2\text{O}_7</math> from <math>\text{FeCr}_2\text{O}_4</math>.<br/>         (ii) What is Lanthanoid contraction ? Write its two consequences.<br/>         (iii) Name two elements of 3d series which show anomalous electronic configuration.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CBSE 2025 (Visually impaired students)</b>  |
| <b>Value points</b> | <p>i) Dichromates are generally prepared from chromate, which in turn are obtained by the fusion of chromite ore (<math>\text{FeCr}_2\text{O}_4</math>) with sodium or potassium carbonate in free access of air</p> $4 \text{FeCr}_2\text{O}_4 + 8 \text{Na}_2\text{CO}_3 + 7 \text{O}_2 \rightarrow 8 \text{Na}_2\text{CrO}_4 + 2 \text{Fe}_2\text{O}_3 + 8 \text{CO}_2$ $2\text{Na}_2\text{CrO}_4 + 2 \text{H}^+ \rightarrow \text{Na}_2\text{Cr}_2\text{O}_7 + 2 \text{Na}^+ + \text{H}_2\text{O}$ <p>ii) The steady decrease in atomic radii in lanthanoid series. / steady decrease in ionic radii or atomic radii across the 4f series<br/> <b>Consequence :</b> 4d and 5d elements have similar radii and similar properties.</p> <p>iii) Cr and Cu</p> | <b>1+1</b><br><b>1+1</b><br><b>1</b>           |
| <b>5</b>            | Attempt any <b>five</b> of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>CBSE</b>                                    |

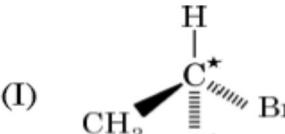
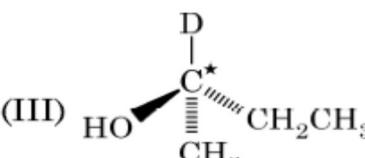
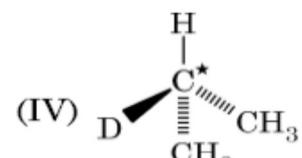

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                     | <p>(a) Ce(III) is easily oxidised to Ce(IV). Comment.</p> <p>(b) <math>E^\circ(\text{Mn}^{2+}/\text{Mn})</math> is <math>-1.18</math> V. Why is this value highly negative in comparison to neighbouring <i>d</i> block elements?</p> <p>(c) Which element of <i>3d</i> series has lowest enthalpy of atomisation and why?</p> <p>(d) What happens when sodium chromate is acidified?</p> <p>(e) Zn, Cd and Hg are soft metals. Why?</p> <p>(f) Why is permanganate titration not carried out in the presence of HCl?</p> <p>(g) The lower oxides of transition metals are basic whereas the highest are amphoteric/acidic. Give reason.</p>                                                                                                                                          | 2024                                               |
| <b>Value points</b> | <p>a) Ce(IV) ion has more stable configuration (<math>4f^0</math>) than Ce(III)ion.</p> <p>b) Due to extra stability of half filled (<math>d^5</math>) orbitals in <math>\text{Mn}^{2+}</math></p> <p>c) Zinc, due to completely filled <i>d</i> orbitals/ weak metallic bonding.</p> <p>d) It gets converted to sodium dichromate</p> <p>e) Due to completely filled <i>d</i>-orbitals/ weak metallic bonding.</p> <p>f) HCl is oxidized by <math>\text{KMnO}_4</math> to <math>\text{Cl}_2</math></p> <p>g) Lower oxides of transition metals are ionic &amp; ionic character decreases or covalent character increases with increase in oxidation state.</p>                                                                                                                       | 1x5=5                                              |
| <b>6</b>            | <p>Attempt any five of the following :</p> <p>(a) <math>\text{Cu}^+</math> is not stable in aqueous solution. Comment.</p> <p>(b) Out of <math>\text{Cr}^{2+}</math> and <math>\text{Fe}^{2+}</math>, which one is a stronger reducing agent and why ?</p> <p>(c) Actinoid contraction is greater from element to element than lanthanoid contraction. Why ?</p> <p>(d) <math>\text{KMnO}_4</math> acts as an oxidising agent in acidic medium. Write the ionic equation to support this.</p> <p>(e) Name the metal in the first transition series which exhibits +1 oxidation state most frequently.</p> <p>(f) Transition metals and their compounds are good catalysts. Justify.</p> <p>(g) Scandium forms no coloured ions, yet it is regarded as a transition element. Why ?</p> | CBSE<br>COMPTT.<br>2024                            |
| <b>Value points</b> | <p>(a) <math>\text{Cu}^+</math> in aqueous solution undergoes disproportionation to Cu and <math>\text{Cu}^{2+}</math>.</p> <p>(b) <math>\text{Cr}^{2+}</math>; due to greater stability of <math>t^2g^3</math> in aqueous state.</p> <p>(c) Due to relatively poor shielding effect of 5f electrons in actinoids than 4f electrons in lanthanoids.</p> <p>(d)</p> $\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}$ <p>(e) Copper / Cu</p> <p>(f) Due to variable oxidation state / provide greater surface area / complex formation.</p> <p>(g) Due to incompletely filled <i>d</i> orbital in its ground state.</p>                                                                                                                    | 1x5=5                                              |
| <b>7</b>            | <p>The elements of <i>3d</i> transition series are given as :</p> <p>Sc Ti V Cr Mn Fe Co Ni Cu Zn</p> <p>Answer the following :</p> <p>(i) Which element shows +1 oxidation state ?</p> <p>(ii) Which element is a strong reducing agent in +2 oxidation state and why ?</p> <p>(iii) Write the element which shows maximum number of oxidation states. Give reason.</p>                                                                                                                                                                                                                                                                                                                                                                                                              | CBSE<br>2024<br>(Visually<br>impaired<br>students) |

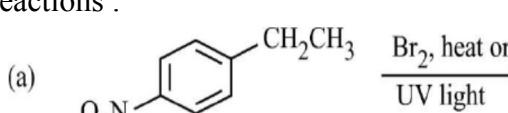
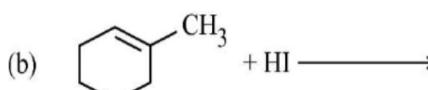
|                     |                                                                                                                                                                                                           |                       |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                     | (iv) Which element has the lowest value of enthalpy of atomization and why ?<br>(v) Which element shows only +3 oxidation state ?                                                                         |                       |
| <b>Value points</b> | (i) Cu<br>(ii) Cr, because Cr is more stable in + 3 oxidation state<br>(iii) Mn, because of the participation of both 3d and 4s electrons<br>(iv) Zn, because of absence of unpaired electrons.<br>(v) Sc | 1<br>1<br>1<br>1<br>1 |

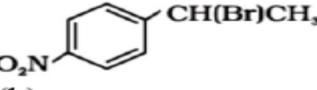
**Chapter 5**  
**Coordination compounds**

| <b>Q.<br/>No.</b>       | <b>MCQ (multiple-choice questions) with Value Points<br/>(1 Mark each)</b>                                                                                                                                                                                                           | <b>Main /<br/>Comptt<br/>With<br/>marks</b>                   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>1</b>                | The correct IUPAC name of $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]^{2+}$ .<br>(A) Diamminedichloridoplatinum (II)<br>(B) Diamminedichloridoplatinum (IV)<br>(C) Diamminedichloridoplatinum (O)<br>(D) Diamminedichloridoplatinate (IV)                                                 | <b>CBSE<br/>2025</b>                                          |
| <b>Value<br/>points</b> | (B)                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>2</b>                | The most stable complex among the following is :<br>(A) $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]$<br>(B) $[\text{Ag}(\text{NH}_3)_2]\text{Cl}$<br>(C) $[\text{Pt}(\text{en})_2\text{Cl}_2]^{2+}$<br>(D) $\text{K}_4[\text{Fe}(\text{CN})_6]$                                           | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value<br/>points</b> | (C)                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>3</b>                | The geometry of diamagnetic nickel complex $[\text{Ni}(\text{CN})_4]^{2-}$ is :<br>(A) Tetrahedral<br>(B) Octahedral<br>(C) Square planar<br>(D) Distorted octahedral                                                                                                                | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value<br/>points</b> | (C)                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>4</b>                | Considering the strength of the ligand, the highest excitation energy will be observed in :<br>(A) $[\text{Co}(\text{H}_2\text{O})_6]^{3+}$<br>(B) $[\text{Co}(\text{NH}_3)_6]^{3+}$<br>(C) $[\text{Co}(\text{CN})_6]^{3-}$<br>(D) $[\text{CoCl}_6]^{3-}$                            | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value<br/>points</b> | (C)                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>5</b>                | The IUPAC name of the complex $[\text{Co}(\text{NH}_3)_5(\text{NO}_2)]\text{Cl}_2$ is :<br>(A) Pentaamminenitrito-O-cobalt(III) chloride<br>(B) Pentaamminenitrito-N-cobalt(III) chloride<br>(C) Pentaamminenitro-cobalt(III) chloride<br>(D) Pentaamminenitrito-cobalt(II) chloride | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value<br/>points</b> | (B)                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>6</b>                | When 1 mole of $\text{CoCl}_3 \cdot 5\text{NH}_3$ is treated with excess of $\text{AgNO}_3$ , 2 moles of $\text{AgCl}$ are obtained. The secondary valency of Co will be :<br>(A) 6<br>(B) 4<br>(C) 3<br>(D) 5                                                                       | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |

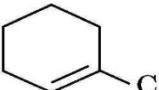
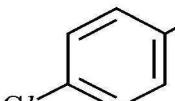
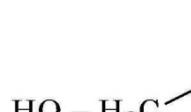
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>Value points</b>                                             | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
|                                                                 | For questions number 1 to 4 below, two statements are given —one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true |                                               |
| <b>1</b>                                                        | <b>Assertion (A)</b> : $[\text{Cr}(\text{H}_2\text{O})_6]\text{Cl}_2$ and $[\text{Fe}(\text{H}_2\text{O})_6]\text{Cl}_2$ are examples of homoleptic complexes.<br><b>Reason (R)</b> All the ligands attached to the metal are the same.                                                                                                                                                                                                                                                                                                                                                   | <b>CBSE 2025</b>                              |
| <b>Value points</b>                                             | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>2</b>                                                        | <b>Assertion (A)</b> : Linkage isomerism arises in coordination compounds containing ambidentate ligand.<br><b>Reason (R)</b> : Ambidentate ligand has two same donor atoms.                                                                                                                                                                                                                                                                                                                                                                                                              | <b>CBSE 2024 (Visually impaired students)</b> |
| <b>Value points</b>                                             | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                      |
| <b>Short answers type questions with Value Points (3 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| <b>1</b>                                                        | (a) Write IUPAC name of the complex $[\text{Co}(\text{NH}_3)_5(\text{ONO})]^{2+}$<br>(b) Write the hybridization of $[\text{Ni}(\text{CN})_4]^{2-}$ and predict its magnetic behaviour.<br>[Atomic number : Ni = 28]<br>(c) What type of isomerism is shown by the given complex :<br>$[\text{Co}(\text{NH}_3)_6][\text{Cr}(\text{CN})_6]$ ?                                                                                                                                                                                                                                              | <b>CBSE COMPTT. 2025</b>                      |
| <b>Value points</b>                                             | (a) pentaamminenitrito-O-cobalt(III) ion<br>(b) $\text{dsp}^2$ , diamagnetic<br>(c) Coordination isomerism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b><br><b>1</b><br><b>1</b>              |
| <b>2</b>                                                        | When a co-ordination compound $\text{CoCl}_3 \cdot 6\text{NH}_3$ is mixed with excess of $\text{AgNO}_3$ solution, 3 moles of $\text{AgCl}$ are precipitated per mole of the compound. Write<br>(i) Structural formula of the complex<br>(ii) IUPAC name of the complex<br>(iii) Hybridization of the complex using valence bond theory<br>[Atomic number: Co = 27]                                                                                                                                                                                                                       | <b>CBSE 2025 (Visually impaired students)</b> |
| <b>Value points</b>                                             | i) $[\text{Co}(\text{NH}_3)_6]\text{Cl}_3$<br>ii) Hexaamminecobalt(III) chloride<br>iii) $\text{d}^2\text{sp}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b><br><b>1</b><br><b>1</b>              |
| <b>3</b>                                                        | (i) Write IUPAC name of $[\text{Pt}(\text{NH}_3)_2\text{Cl}(\text{ONO})]$ .<br>(ii) Why $[\text{Co}(\text{en})_3]^{3+}$ is more stable complex than $[\text{Co}(\text{NH}_3)_6]^{3+}$ ?<br>(iii) Predict the hybridization of $[\text{Ni}(\text{CO})_4]$ on the basis of valence bond theory.<br>[Atomic number : Ni = 28]                                                                                                                                                                                                                                                                | <b>CBSE 2025 (Visually impaired students)</b> |
| <b>Value points</b>                                             | i) Diamminechloridonitrito-O-platinum(II)<br>ii) $[\text{Co}(\text{en})_3]^{3+}$ contains a didentate ligand showing chelate effect / Because of chelate formation.<br>iii) $\text{sp}^3$                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1</b><br><b>1</b><br><b>1</b>              |

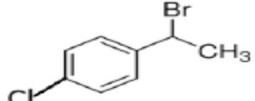
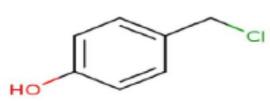



| 4                                                       | <p>Write the IUPAC names of the following coordination compounds (any three):</p> <p>(a) <math>[\text{Co}(\text{NH}_3)_4\text{Cl}(\text{NO}_2)]\text{Cl}</math>      (b) <math>[\text{Ni}(\text{NH}_3)_6]\text{Cl}_2</math><br/>     (c) <math>\text{K}_3[\text{Cr}(\text{C}_2\text{O}_4)_3]</math>      (d) <math>[\text{Co}(\text{en})_2\text{Br}_2]^+</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CBSE<br>2024                              |                                   |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|--------------------------|-------------------------------|-------------------------------------|-----|--------|--------|-------------------------------------------------------|-----|------------|-----|-----------------------------------|-----|------|---------------|---------------------------------|-----|---------------------|-------------|------------------------------------------|-----|-----|------|------------------------------------------|-----|------------|--------|-------------------------|
| Value points                                            | <p>a) Tetraamminechloridonitrito-N-cobalt (III) chloride<br/>     b) Hexaamminenickel(II) chloride<br/>     c) Potassium trioxalatochromate (III)<br/>     d) Dibromidobis(ethane-1,2-diamine)cobalt (III) ion</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1x3=3                                     |                                   |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| 5                                                       | <p>(a) Draw the geometrical isomers of the complex <math>[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]</math>.<br/>     (b) Give the electronic configuration of <math>\text{d}^4</math> ion when <math>\text{D}_0 &gt; \text{P}</math>.<br/>     (c) Solution of <math>[\text{Ni}(\text{H}_2\text{O})_6]^{2+}</math> is green in colour whereas <math>[\text{Ni}(\text{CN})_4]^{2-}</math> is colourless. Give reason. [Atomic number : Ni = 28]</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBSE<br>COMPTT.<br>2024                   |                                   |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| Value points                                            | <p>(a)</p>  <p>(b) <math>t_{2g}^4 e_g^0</math><br/>     (c) In <math>[\text{Ni}(\text{H}_2\text{O})_6]^{2+}</math> due to the presence of two unpaired electrons that undergoes d-d transition whereas in <math>[\text{Ni}(\text{CN})_4]^{2-}</math> there is no unpaired electrons.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{2} + \frac{1}{2}$<br><br>1<br>1 |                                   |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| <b>Case based questions with Value Points (4 marks)</b> | <p>One of the most distinctive properties of transition metal complexes is their wide range of colours. This means that some of the visible spectrum is being removed from white light as it passes through the sample, so the light that emerges is no longer white. The colour of the complex is complementary to that which is absorbed. The complementary colour is the colour generated from the wavelength left over. If green light is absorbed by the complex, it appears red. Table given below, gives the relationship between different wavelengths of the light absorbed and the colour observed.</p> <table border="1" data-bbox="266 1507 1235 1994"> <thead> <tr> <th data-bbox="266 1507 536 1657">Coordination Entity</th> <th data-bbox="536 1507 759 1657">Wavelength of light absorbed (nm)</th> <th data-bbox="759 1507 981 1657">Colour of light absorbed</th> <th data-bbox="981 1507 1235 1657">Colour of coordination entity</th> </tr> </thead> <tbody> <tr> <td data-bbox="266 1657 536 1713"><math>[\text{CoCl}(\text{NH}_3)_5]^{2+}</math></td><td data-bbox="536 1657 759 1713">535</td><td data-bbox="759 1657 981 1713">Yellow</td><td data-bbox="981 1657 1235 1713">Violet</td></tr> <tr> <td data-bbox="266 1713 536 1769"><math>[\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+}</math></td><td data-bbox="536 1713 759 1769">500</td><td data-bbox="759 1713 981 1769">Blue-green</td><td data-bbox="981 1713 1235 1769">Red</td></tr> <tr> <td data-bbox="266 1769 536 1825"><math>[\text{Co}(\text{NH}_3)_6]^{3+}</math></td><td data-bbox="536 1769 759 1825">475</td><td data-bbox="759 1769 981 1825">Blue</td><td data-bbox="981 1769 1235 1825">Yellow-orange</td></tr> <tr> <td data-bbox="266 1825 536 1882"><math>[\text{Co}(\text{CN})_6]^{3-}</math></td><td data-bbox="536 1825 759 1882">310</td><td data-bbox="759 1825 981 1882">Ultra-Violet (U.V.)</td><td data-bbox="981 1825 1235 1882">Pale Yellow</td></tr> <tr> <td data-bbox="266 1882 536 1938"><math>[\text{Cu}(\text{H}_2\text{O})_4]^{2+}</math></td><td data-bbox="536 1882 759 1938">600</td><td data-bbox="759 1882 981 1938">Red</td><td data-bbox="981 1882 1235 1938">Blue</td></tr> <tr> <td data-bbox="266 1938 536 1994"><math>[\text{Ti}(\text{H}_2\text{O})_6]^{3+}</math></td><td data-bbox="536 1938 759 1994">498</td><td data-bbox="759 1938 981 1994">Blue-green</td><td data-bbox="981 1938 1235 1994">Violet</td></tr> </tbody> </table> | Coordination Entity                       | Wavelength of light absorbed (nm) | Colour of light absorbed | Colour of coordination entity | $[\text{CoCl}(\text{NH}_3)_5]^{2+}$ | 535 | Yellow | Violet | $[\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+}$ | 500 | Blue-green | Red | $[\text{Co}(\text{NH}_3)_6]^{3+}$ | 475 | Blue | Yellow-orange | $[\text{Co}(\text{CN})_6]^{3-}$ | 310 | Ultra-Violet (U.V.) | Pale Yellow | $[\text{Cu}(\text{H}_2\text{O})_4]^{2+}$ | 600 | Red | Blue | $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$ | 498 | Blue-green | Violet | CBSE<br>COMPTT.<br>2025 |
| Coordination Entity                                     | Wavelength of light absorbed (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Colour of light absorbed                  | Colour of coordination entity     |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| $[\text{CoCl}(\text{NH}_3)_5]^{2+}$                     | 535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yellow                                    | Violet                            |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| $[\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+}$   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blue-green                                | Red                               |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| $[\text{Co}(\text{NH}_3)_6]^{3+}$                       | 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blue                                      | Yellow-orange                     |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| $[\text{Co}(\text{CN})_6]^{3-}$                         | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ultra-Violet (U.V.)                       | Pale Yellow                       |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| $[\text{Cu}(\text{H}_2\text{O})_4]^{2+}$                | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Red                                       | Blue                              |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |
| $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$                | 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Blue-green                                | Violet                            |                          |                               |                                     |     |        |        |                                                       |     |            |     |                                   |     |      |               |                                 |     |                     |             |                                          |     |     |      |                                          |     |            |        |                         |



|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                     | <p>(a) What is spectrochemical series ? Write the relationship between <math>D_t</math> and <math>D_o</math>.</p> <p>(b) (i) Arrange <math>[\text{Co}(\text{CN})_6]^{3-}</math> , <math>[\text{Co}(\text{NH}_3)_6]^{3+}</math> and <math>[\text{Cu}(\text{H}_2\text{O})_4]^{2+}</math> in increasing order of wavelength of light absorbed.</p> <p style="text-align: center;"><b>OR</b></p> <p>(b) (ii) On the basis of crystal field theory, write the electronic configuration of <math>d^5</math> ion if <math>D_o &lt; P</math>.</p> <p>(c) Define crystal field splitting energy.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| <b>Value points</b> | <p>(a) Spectrochemical series: Arrangement of ligands in the increasing order of their field strength.</p> $D_t = 4/9 D_o$ <p>(b)(i) <math>[\text{Co}(\text{CN})_6]^{3-} &lt; [\text{Co}(\text{NH}_3)_6]^{3+} &lt; [\text{Cu}(\text{H}_2\text{O})_4]^{2+}</math></p> <p>(b) (ii) <math>t_{2g}^3 e_g^2</math></p> <p>(c) The energy required to separate the degenerate d-orbitals into <math>t_{2g}</math> and <math>e_g</math> sets, when ligands approach the central metal atom/ion.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1+1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
| <b>2</b>            | <p>Werner proposed the concept of a primary valence and a secondary valence for a metal ion. The primary valences are normally ionisable and are satisfied by negative ions. The secondary valences are non-ionisable. These are satisfied by neutral molecules or negative ions. The secondary valency is equal to the co-ordination number and is normally fixed for a metal. The Valence Bond Theory (VBT) explains the formation, magnetic behaviour and geometrical shapes of co-ordination compounds whereas the Crystal Field Theory (CFT) is based on the effect of different crystal fields on the degeneracy of d-orbitals energies of the central metal atom / ion.</p> <p>(a) <math>[\text{Cr}(\text{NH}_3)_6]^{3+}</math> is paramagnetic while <math>[\text{Ni}(\text{CN})_4]^{2-}</math> is diamagnetic.</p> <p>Explain why ? [Atomic number : Cr = 24, Ni = 28]</p> <p>(b) Write one difference between a primary valence and a secondary Valence.</p> <p>(c) What is crystal field splitting energy ?</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) On the basis of CFT, write the electronic configuration of <math>d^4</math> orbitals when <math>D_o &gt; P</math>.</p> | <b>CBSE 2025 (Visually impaired students)</b>  |
| <b>Value points</b> | <p>a) Because in <math>[\text{Cr}(\text{NH}_3)_6]^{3+}</math>, there are 3 unpaired electrons in the d-orbitals of the chromium ion ,while in <math>[\text{Ni}(\text{CN})_4]^{2-}</math> , cyanide is a strong field ligand causing the d-electrons to pair up resulting in no unpaired electrons.</p> <p>b) The primary valences are normally ionisable while secondary valences are non-ionisable.</p> <p>c) The difference of energy between the two sets of d-orbitals <math>t_{2g}</math> and <math>e_g</math> due to the presence of ligands in a definite geometry.</p> <p style="text-align: center;"><b>OR</b></p> <p>c) <math>t_{2g}^4 e_g^0</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>1+1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
| <b>3</b>            | <p>The oxidation number of the central atom in a complex is defined as the charge it would carry if all the ligands are removed along with the electron pairs that are shared with the central atom. Similarly the charge on the complex is the sum of the charges of the constituent parts i.e. the sum of the charges on the central metal ion and its surrounding ligands. Based on this, the complex is called neutral if the sum of the charges of the constituents is equal to zero. However, for an anion or cationic complex, the sum of the charges of the constituents is equal to the charge on the coordination sphere.</p> <p>Answer the following questions:</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>CBSE 2024</b>                               |

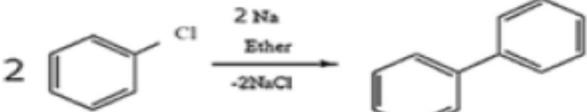
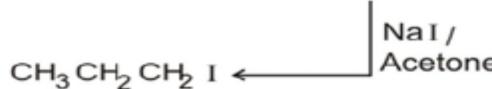

|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                               | <p>(a) Define ambidentate ligand with an example.<br/>     (b) What type of isomerism is shown by <math>[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{SO}_4</math> and <math>[\text{Co}(\text{NH}_3)_5\text{SO}_4]\text{Cl}</math>?<br/>     (c) Define chelate effect. How it affects the stability of complex?<br/> <b>OR</b><br/>     (c) Find the coordination number and oxidation state of chromium in <math>\text{Na}_3[\text{Cr}(\text{C}_2\text{O}_4)_3]</math>.</p>                                                                                                                                                                                                                |                                                                     |
| <b>Value points</b>                                           | <p>a) Ligand which has two different donor atoms and either of the two ligates in the complex<br/>     Examples :- <math>\text{NO}^{2-}</math> / <math>\text{SCN}^-</math> / <math>\text{CN}^-</math> (any one)</p> <p>b) Ionization isomerism</p> <p>c) When a bi-dentate or polydentate ligand ligates to the metal atom or ion that forms ring<br/>     More is the chelation more is the more is the stability.<br/> <b>OR</b></p> <p>c) Coordination number: 6 , Oxidation State = +3</p>                                                                                                                                                                                          | $\frac{1}{2} + \frac{1}{2}$<br><b>1</b><br><b>1+1</b><br><b>1+1</b> |
| <b>Long answer type questions with Value Points (5 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
| <b>1</b>                                                      | <p>Answer the following :</p> <p>(a) Low spin tetrahedral complexes are not known.</p> <p>(b) <math>\text{Co}^{2+}</math> is easily oxidised to <math>\text{Co}^{3+}</math> in the presence of a strong ligand [At. No. of Co = 27]</p> <p>(c) What type of isomerism is shown by the complex <math>[\text{Co}(\text{NH}_3)_6][\text{Cr}(\text{CN})_6]</math></p> <p>(d) Why a solution of <math>[\text{Ni}(\text{H}_2\text{O})_6]^{2+}</math> is green while a solution of <math>[\text{Ni}(\text{CN})_4]^{2-}</math> is colourless. (At. No. of Ni = 28)</p> <p>(e) Write the IUPAC name of the following complex : <math>[\text{Co}(\text{NH}_3)_5(\text{CO}_3)]\text{Cl}</math></p> | <b>CBSE 2025</b>                                                    |
| <b>Value points</b>                                           | <p>(a) The orbital splitting energies are not sufficiently large for forcing paring of electrons.</p> <p>(b) In the presence of strong field ligand, <math>d^7</math> is converted into more stable <math>d^6</math></p> <p>(c) Co-ordination isomerism.</p> <p>(d) <math>[\text{Ni}(\text{H}_2\text{O})_6]^{2+}</math> has unpaired electrons whereas <math>[\text{Ni}(\text{CN})_4]^{2-}</math> has no unpaired electron.</p> <p>(e) Pentaamminecarbonatocobalt(III) chloride</p>                                                                                                                                                                                                     | <b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>            |
| <b>2</b>                                                      | <p>(a) What is meant by 'Chelate effect' ? Give an example.</p> <p>(b) Write the hybridization and magnetic behaviour of <math>[\text{Fe}(\text{CN})_6]^{4-}</math>. (Atomic number : Fe = 26)</p> <p>(c) If <math>\text{PtCl}_2\text{NH}_3</math> does not react with <math>\text{AgNO}_3</math>, what will be its formula ?</p>                                                                                                                                                                                                                                                                                                                                                       | <b>CBSE 2025</b>                                                    |
| <b>Value points</b>                                           | <p>(a) The higher stability of complexes involving chelating ligands as compare to complexes having non-chelating ligand.<br/>     Example: <math>[\text{Co}(\text{en})_3]^{3+}</math> (or any other correct example)</p> <p>(b) <math>d^2\text{sp}^3</math> , diamagnetic</p> <p>(c) <math>[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]</math></p>                                                                                                                                                                                                                                                                                                                                            | <b>1+1</b><br><b>1+1</b><br><b>1</b>                                |

**Chapter 6**  
**Haloalkanes and Haloarenes**




| <b>Q.<br/>No.</b>       | <b>MCQ (multiple-choice questions) with Value Points<br/>(1 Mark each)</b>                                                                                                                                                                                                                                                                                                   | <b>Main /<br/>Comptt<br/>With<br/>marks</b>                   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>1</b>                | Alkyl halides undergoing nucleophilic bimolecular substitution reaction involve<br>(A) retention of configuration<br>(B) formation of racemic mixture<br>(C) inversion of configuration<br>(D) formation of carbocation                                                                                                                                                      | <b>CBSE<br/>2025</b>                                          |
| <b>Value<br/>points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b>                                                      |
| <b>2</b>                | Arrange the following compounds in increasing order of their boiling point<br>(i) $(\text{CH}_3)_2\text{CH} - \text{CH}_2\text{Br}$ (ii) $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br}$ (iii) $(\text{CH}_3)_3\text{C} - \text{Br}$<br>The correct order is<br>(A) (ii) < (i) < (iii)<br>(B) (i) < (ii) < (iii)<br>(C) (iii) < (i) < (ii)<br>(D) (iii) < (ii) < (i) | <b>CBSE<br/>2025</b>                                          |
| <b>Value<br/>points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b>                                                      |
| <b>3</b>                | Identify the Freon from the following compounds :<br>(A) $\text{CCl}_2\text{F}_2$<br>(B) $\text{CCl}_2\text{Br}_2$<br>(C) $\text{CH}_2\text{Cl} - \text{CHCl}_2$<br>(D) $\text{CHCl}_2 - \text{CHCl}_2$                                                                                                                                                                      | <b>CBSE<br/>COMPTT<br/>2025</b>                               |
| <b>Value<br/>points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b>                                                      |
| <b>4</b>                | Which one of the following halides contains following halides contains $\text{Csp}^2 - \text{X}$ bond<br>(A) Alkyl halide<br>(B) Allyl halide<br>(C) Benzyl halide<br>(D) Vinyl halide                                                                                                                                                                                       | <b>CBSE<br/>COMPTT<br/>2025</b>                               |
| <b>Value<br/>points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b>                                                      |
| <b>5</b>                | The conversion of an alkyl halide into an alcohol by aqueous $\text{NaOH}$ is classified as<br>(A) an addition reaction<br>(B) a substitution reaction<br>(C) a dehydrohalogenation reaction<br>(D) a dehydration reaction                                                                                                                                                   | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value<br/>points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b>                                                      |



|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>6</b>                | The synthesis of alkyl fluoride is best accomplished by<br>(A) Sandmeyer reaction<br>(B) Finkelstein reaction<br>(C) Wurtz reaction<br>(D) Swarts reaction                                                                                                                                                                                                                                                                                                                                                                                               | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value<br/>points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b>                                                      |
| <b>7</b>                | Auto-oxidation of chloroform in air and light produces a poisonous gas known as<br>(A) Phosphine<br>(B) Mustard gas<br>(C) Phosgene<br>(D) Tear gas                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CBSE<br/>2024</b>                                          |
| <b>Value<br/>points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b>                                                      |
| <b>8</b>                | In which of the following molecules, C atom marked with asterisk is chiral?<br><br>(I) <br><br>(II) <br><br>(III) <br><br>(IV) <br><br>(A) I, II, III<br>(B) I, II, III, IV<br>(C) II, III, IV<br>(D) I, III, IV | <b>CBSE<br/>2024</b>                                          |
| <b>Value<br/>points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b>                                                      |
| <b>9</b>                | The correct IUPAC name of $(\text{CH}_3)_3\text{C}-\text{CH}_2\text{Br}$ is :<br>(A) 2,2-Dimethyl-2-bromopropane<br>(B) 1-Bromo-2,2,2-trimethylethane<br>(C) 2-Bromo-1,1,1-trimethylethane<br>(D) 1-Bromo-2,2-dimethylpropane                                                                                                                                                                                                                                                                                                                            | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value<br/>points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b>                                                      |
| <b>10</b>               | A primary alkyl halide would prefer to undergo _____.<br>(A) $\text{S}_{\text{N}}^2$ reaction<br>(B) $\text{S}_{\text{N}}^1$ reaction<br>(C) Electrophilic substitution reaction<br>(D) Racemisation                                                                                                                                                                                                                                                                                                                                                     | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value<br/>points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1</b>                                                      |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                     | <p>For questions number 1 to 4 below, two statements are given —one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :</p> <p>(C) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).</p> <p>(D) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).</p> <p>(C) Assertion (A) is true, but Reason (R) is false.</p> <p>(D) Assertion (A) is false, but Reason (R) is true</p> |                                              |
| 1                   | <p><b>Assertion (A)</b> : The boiling points of alkyl halides decrease in the order :<br/> <math>RI &gt; RBr &gt; RCf &gt; RF</math>.</p> <p><b>Reason (R)</b> : The boiling points of alkyl chlorides, bromides and iodides are considerably higher than that of the hydrocarbon of comparable molecular mass</p>                                                                                                                                                                                                                                                                                               | CBSE<br>2025                                 |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 2                   | <p><b>Assertion (A)</b> : Presence of <math>-NO_2</math> group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution reactions.</p> <p><b>Reason (R)</b> : Nitro group decreases the electron density over the benzene ring.</p>                                                                                                                                                                                                                                                                                                                                    | CBSE<br>COMPTT.<br>2025                      |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 3                   | <p><b>Assertion (A)</b> : Nucleophilic substitution reaction of chlorobenzene is easier than that of chloroethane.</p> <p><b>Reason (R)</b> : C – Cl bond in chlorobenzene has partial double bond character due to resonance.</p>                                                                                                                                                                                                                                                                                                                                                                               | CBSE<br>2025<br>(Visually impaired students) |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 4                   | <p><b>Assertion (A)</b>: Inversion of configuration is observed in <math>SN^2</math> reaction.</p> <p><b>Reason (R)</b>: The reaction proceeds with the formation of carbocation.</p>                                                                                                                                                                                                                                                                                                                                                                                                                            | CBSE<br>2024                                 |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                            |
|                     | <b>Short answers type questions with Value Points (2 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |
| 1                   | <p>Draw the structures of major monohalo products in each of the following reactions :</p> <p>(a)  <math>\xrightarrow[UV\ light]{Br_2, \text{heat or}}</math></p> <p>(b)  + HI <math>\longrightarrow</math></p>                                                                                                                                                                                                                            | CBSE<br>COMPTT.<br>2024                      |



|              |                                                                                                                                                                                |        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Value points | (a) <br>(b)  | 1<br>1 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|

### Short answers type questions (3 marks)

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1 | <p>Draw the structure of the major monohalo product for each of the following reaction :</p> <p>(a)  + HBr <math>\longrightarrow</math> ?</p> <p>(b)  <math>\xrightarrow{\text{Br}_2, \text{Heat}}</math> ?</p> <p>(c)  <math>\xrightarrow{\text{HCl, Heat}}</math> ?</p> | CBSE<br>2025 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|

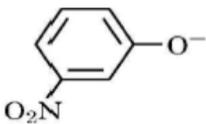
|              |                                                                                                                                                                                                                                                                                             |       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Value points | <p>(a) </p> <p>(b) </p> <p>(c) </p> | 1x3=3 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|

|   |                                                                                                                                                                                |              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2 | <p>How do you convert :</p> <ol style="list-style-type: none"> <li>Chlorobenzene to biphenyl</li> <li>Propene to 1-Iodopropane</li> <li>2-bromobutane to but-2-ene.</li> </ol> | CBSE<br>2025 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|

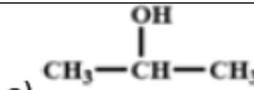
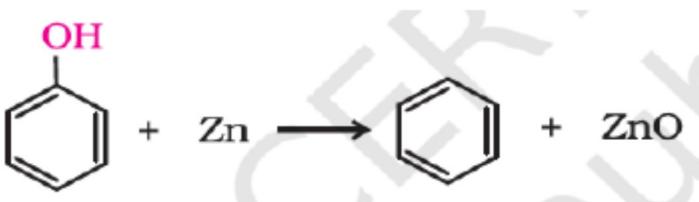
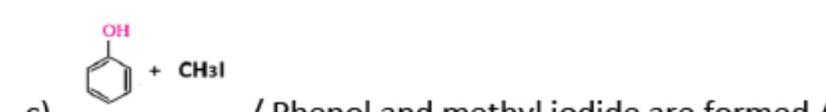
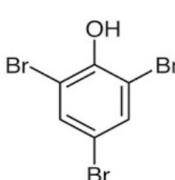
|              |                                                                                                                                                                                                                                                                                               |       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Value points | <p>(a) </p> <p>(b) </p> <p>(c) </p> | 1x3=3 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 3            | <p>Identify 'A' to 'F' in the following reaction sequence :</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBSE<br>COMPTT.<br>2025                                                                   |
| Value points | <p><b>A</b> = <math>\text{CH}_3 - \underset{\text{CH}_3}{\text{CH}} - \text{CH}_2\text{MgBr}</math>      <b>B</b> = <math>\text{CH}_3 - \underset{\text{CH}_3}{\text{CH}} - \text{CH}_3</math><br/> <b>C</b> = <math>\text{CH}_3 - \underset{\text{CH}_3}{\text{CH}} - \text{CH}_2 - \text{OC}_2\text{H}_5</math>      <b>D</b> = <math>\text{CH}_3 - \underset{\text{CH}_3}{\text{C}} = \text{CH}_2</math><br/> <b>E</b> = <math>\text{CH}_3 - \underset{\text{CH}_3}{\text{C}} - \underset{\text{CH}_3}{\text{CH}_3}</math>      <b>F</b> = <math>\text{CH}_3 - \underset{\text{CH}_3}{\text{C}} - \underset{\text{CH}_3}{\text{C}} - \underset{\text{CH}_3}{\text{CH}_3}</math></p> | $\frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$ |
| 4.           | <p>What happens when :</p> <ol style="list-style-type: none"> <li>methyl chloride is treated with KCN ?</li> <li>methyl bromide is treated with NaI in dry acetone ?</li> <li>methyl bromide is treated with silver fluoride ?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                              | CBSE<br>COMPTT.<br>2025                                                                   |
| Value points | <p>(i) <math>\text{CH}_3\text{CN}</math> / Methyl cyanide / Ethanenitrile is formed.<br/> (ii) <math>\text{CH}_3\text{I}</math> / Iodomethane / Methyl iodide is formed.<br/> (iii) <math>\text{CH}_3\text{F}</math> / Fluoromethane / Methyl fluoride is formed.</p>                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1                                                                               |
| 5            | <p>Define Racemization. Out of <math>\text{S}_{\text{N}}^1</math> and <math>\text{S}_{\text{N}}^2</math> reactions, which is accompanied by racemization ? Give reason in support of your answer.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBSE<br>2025<br>(Visually<br>impaired<br>students)                                        |
| Value points | <ul style="list-style-type: none"> <li>The process of conversion of an enantiomer into a racemic mixture is known as racemisation.</li> <li><math>\text{S}_{\text{N}}^1</math></li> <li>In <math>\text{S}_{\text{N}}^1</math> the carbocation formed is <math>sp^2</math> hybridised and planar.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>1                                                                               |
| 6            | <p>Account for the following:</p> <ol style="list-style-type: none"> <li>Haloalkanes react with AgCN to form isocyanide as main product.</li> <li>Allyl chloride shows high reactivity towards <math>\text{SN}1</math> reaction.</li> <li>Haloarenes are extremely less reactive towards nucleophilic substitution reactions.</li> </ol>                                                                                                                                                                                                                                                                                                                                               | CBSE<br>2024                                                                              |
| Value points | <p>a) AgCN is mainly covalent in nature and only nitrogen is free to donate electron pair forming isocyanide as the main product.</p> <p>b) Allyl carbocation formed is resonance stabilized.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1                                                                                    |



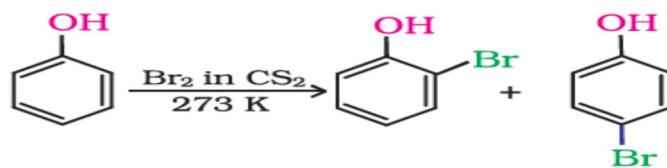

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                     | c) Due to Resonance, a partial double bond is formed between C atom in C—X bond / Instability of phenyl cation/ $sp^2$ hybridization of carbon atom in C-X bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                       |
| 7                   | Account for the following :<br>(a) The dipole moment of chlorobenzene is lower than that of cyclohexylchloride.<br>(b) Alkyl halides are immiscible in water.<br>(c) t-butyl bromide has lower boiling point than n-butyl bromide.                                                                                                                                                                                                                                                                                                                                                                                                                                               | CBSE<br>COMPTT.<br>2024 |
| <b>Value points</b> | (a) Due to $-I$ and $+R$ effect in chlorobenzene net dipole moment is lower than that of cyclohexyl chloride in which net dipole moment is due to $-I$ effect only / $sp^2$ hybridized carbon in chlorobenzene is more electronegative and C-Cl bond length is shorter as compared to $sp^3$ hybridized carbon in cyclohexyl chloride.<br>(b) Less energy is released when new attractions are set up between the alkyl halide and the water molecules as these are not as strong as the original hydrogen bonds in water / Alkyl halides are unable to form hydrogen bond with water. (c) Due to branching t-butyl bromide has weaker van der Waal forces than n-butyl bromide. | 1½<br>1½                |

## Chapter 7





### Alcohol , Phenol & Ethers

| Q. No.              | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                           | Main / Comptt With marks |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1                   | Which is the correct order of acid strength from the following ?<br>(A) $C_6H_5OH > H_2O > ROH$<br>(B) $C_6H_5OH > ROH > H_2O$<br>(C) $ROH > C_6H_5OH > H_2O$<br>(D) $H_2O > C_6H_5OH > ROH$ | CBSE<br>2025             |
| <b>Value points</b> | (A)                                                                                                                                                                                          | 1                        |
| 2                   | Out of the following organic compounds, the one which will react with Lucas                                                                                                                  | CBSE                     |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                     | <p>reagent at room temperature is :</p> <p>(A) <math>\text{CH}_2 = \text{CH} - \text{CH}_2\text{OH}</math><br/>         (B) <math>\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}</math><br/>         (C) <math>\text{C}_6\text{H}_5\text{CH}_2\text{OH}</math><br/>         (D) <math>(\text{CH}_3)_3\text{COH}</math></p>                                                                                           | <b>COMPTT.<br/>2025</b>                                       |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                      |
| <b>3</b>            | <p>When phenyl methyl ether is heated with HI, it produces :</p> <p>(A) Methyl chloride and Iodobenzene<br/>         (B) Benzene and Methanol<br/>         (C) Iodobenzene and Methanol<br/>         (D) Phenol and Methyl iodide</p>                                                                                                                                                                            | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                      |
| <b>4</b>            | <p>The compound which undergoes dehydration most easily is</p> <p>(A) 2-Methylpropan -2- ol<br/>         (B) Ethanol<br/>         (C) 2-Methylbutan -2- ol<br/>         (D) Propan -1- ol</p>                                                                                                                                                                                                                    | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                      |
| <b>5</b>            | <p>Benzene diazonium chloride on hydrolysis gives</p> <p>(A) Chlorobenzene<br/>         (B) Phenol<br/>         (C) Anisole<br/>         (D) Aniline</p>                                                                                                                                                                                                                                                         | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                      |
| <b>6</b>            | <p>Out of the following alkenes, the one which will produce tertiary butyl alcohol on acid catalysed hydration is</p> <p>(A) <math>\text{CH}_3\text{CH}_2\text{CH} = \text{CH}_2</math><br/>         (B) <math>\text{CH}_3\text{CH} = \text{CH}_2</math><br/>         (C) <math>\text{CH}_3 - \text{CH} = \text{CH} - \text{CH}_3</math><br/>         (D) <math>(\text{CH}_3)_2\text{C} = \text{CH}_2</math></p> | <b>CBSE<br/>2024</b>                                          |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1</b>                                                      |
| <b>7</b>            | <p>Which of the following species can act as the strongest base ?</p> <p>(A) <math>\text{OH}^-</math><br/>         (B) <math>\text{C}_6\text{H}_5\text{O}^-</math><br/>         (C) <math>\text{RO}^-</math><br/>         (D)</p>                                                                                                                                                                                | <b>CBSE<br/>2024</b>                                          |

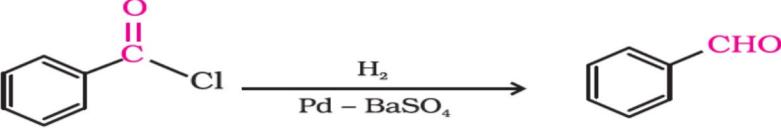
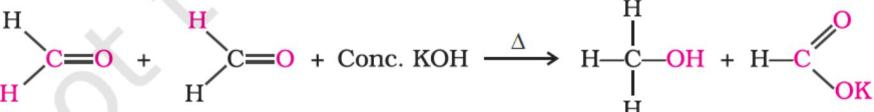

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                             |
| <b>8</b>            | Williamson's synthesis of preparing dimethyl ether is a/an<br>(A) electrophilic substitution<br>(B) $S_N^1$ reaction<br>(C) electrophilic addition<br>(D) $S_N^2$ reaction                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                             |
| <b>9</b>            | Phenol is less acidic than :<br>(A) Ethanol<br>(B) o-cresol<br>(C) p-cresol<br>(D) o-nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                             |
|                     | For questions number 1 to 4 below, two statements are given —one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true |                                                               |
| <b>1</b>            | <b>Assertion (A) :</b> The boiling point of ethanol is higher than that of methoxymethane.<br><b>Reason (R) :</b> There is intramolecular hydrogen bonding in ethanol.                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CBSE<br/>2025</b>                                          |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                             |
| <b>2</b>            | <b>Assertion (A) :</b> p-methoxyphenol is a stronger acid than p- nitrophenol.<br><b>Reason (R) :</b> Methoxy group is electron-donating group whereas nitro group is electron- withdrawing.                                                                                                                                                                                                                                                                                                                                                                                              | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                             |
| <b>3</b>            | <b>Assertion (A) :</b> $(CH_3)_3C-O-CH_3$ gives $(CH_3)_3C-I$ and $CH_3OH$ on treatment with HI.<br><b>Reason (R) :</b> The reaction occurs by $S_N^1$ mechanism.                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>CBSE<br/>2025<br/>(Visually<br/>impaired</b>               |

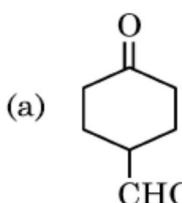
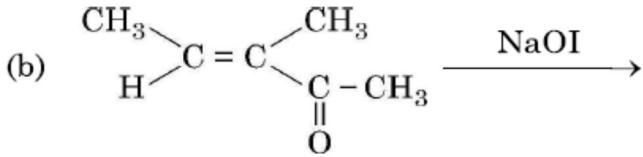
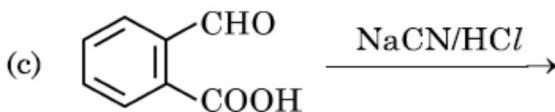
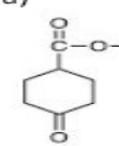
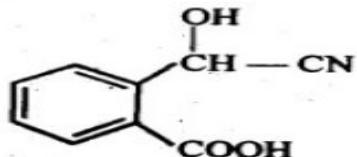
|                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                   | students)                                                     |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                             |
| <b>4</b>            | <b>Assertion (A):</b> <i>p</i> -methoxyphenol is a stronger acid than <i>p</i> -nitrophenol.<br><b>Reason (R):</b> Methoxy group shows +I effect whereas nitro group shows -I effect.                                                                                                                                                                                                             | <b>CBSE<br/>2024</b>                                          |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                             |
|                     | <b>Short answers type questions with Value Points (2 marks)</b>                                                                                                                                                                                                                                                                                                                                   |                                                               |
| <b>1</b>            | Write the reaction involved in the following :<br>(a) Reimer-Tiemann reaction<br>(b) Kolbe's reaction                                                                                                                                                                                                                                                                                             | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value points</b> | <p>(a)</p> <p>(b)</p>                                                                                                                                                                                                                                                                                                                                                                             | 1<br>1                                                        |
| <b>2</b>            | A and B are two functional isomers of compound C <sub>3</sub> H <sub>6</sub> O. On heating with NaOH and I <sub>2</sub> , isomer B forms a precipitate of iodoform whereas isomer A does not form any precipitate. Write the formulae of A and B.                                                                                                                                                 | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | <b>A</b> = CH <sub>3</sub> CH <sub>2</sub> CHO <b>B</b> = CH <sub>3</sub> COCH <sub>3</sub>                                                                                                                                                                                                                                                                                                       | 1+1                                                           |
|                     | <b>Short answers type questions with Value Points (3 marks)</b>                                                                                                                                                                                                                                                                                                                                   |                                                               |
| <b>1</b>            | Give reasons for the following : 3<br>(a) t-butyl bromide on reaction with sodium methoxide gives alkene as main product and not ether.<br>(b) o-nitrophenol is steam volatile while p-nitrophenol is not.<br>(c) Alcohol is less acidic than phenol.                                                                                                                                             | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value points</b> | <p>(a) Beside being a nucleophile, methoxide acts as a strong base. Thus, elimination reaction predominates over substitution to give alkene as the main product and not ether.</p> <p>(b) Due to intramolecular H-bonding in o-nitrophenol, whereas intermolecular H-bonding in p-nitrophenol.</p> <p>(c) Alkoxide ion is less stable than the phenoxide ion, which is resonance stabilised.</p> | 1<br>1<br>1                                                   |
| <b>2</b>            | What happens when<br>(a) Ethanal is treated with CH <sub>3</sub> MgBr followed by hydrolysis ?<br>(b) Phenol is treated with Zinc dust ?                                                                                                                                                                                                                                                          | <b>CBSE<br/>2025<br/>(Visually</b>                            |

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|              | (c) Anisole is treated with HI ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | impaired students) |
| Value points | <p>a)  / Propan-2-ol is formed/</p> <p><math display="block">\text{CH}_3\text{C}(=\text{O})\text{H} + \text{CH}_3\text{MgBr} \xrightarrow[\text{ether}]{\text{Dry}} \begin{array}{c} \text{CH}_3-\text{C}(\text{H})(\text{MgBr})-\text{CH}_3 \\   \\ \text{CH}_3 \end{array} \xrightarrow{\text{H}_2\text{O}} \text{Mg(OH)Br} + \text{CH}_3\text{CH(OH)CH}_3</math></p> <p>b) Benzene ( ) is formed /</p> <p></p> <p>c)  / Phenol and methyl iodide are formed /</p> <p></p> | 1x3=3              |
| 3            | Give the structure of the major product expected from the following reactions:<br>(a) Reaction of ethanal with methyl-magnesium bromide followed by hydrolysis.<br>(b) Hydration of But-1-ene in the presence of dilute sulphuric acid.<br>(c) Reaction of phenol with bromine water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBSE 2024          |
| Value points | a) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_3$<br>b) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_3$<br>c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1x3=3              |
| 4            | What happens when : (any three)<br>(a) MgBr is treated with $\text{CH}_3\text{CHO}$ followed by hydrolysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CBSE COMPTT.       |

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                         | <p>(b) Phenol is treated with conc. <math>(\text{HNO}_3 + \text{H}_2\text{SO}_4)</math>.<br/> (c) Anisole is treated with <math>\text{CH}_3\text{COCl}</math> in the presence of anhydrous <math>\text{AlCl}_3</math>.<br/> (d) Propan-2-ol is heated with Cu at 573 K.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2024         |
| Value points                                            | <p>(a)</p> <p>(b)</p> <p>(c)</p> <p>(d)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1x3=3        |
| <b>Case based questions with Value Points (4 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| 1                                                       | <p>Phenols undergo electrophilic substitution reactions readily due to the strong activating effect of OH group attached to the benzene ring. Since, the OH group increases the electron density more to o— and p— positions therefore OH group is ortho, para-directing. Reimer-Tiemann reaction is one of the examples of aldehyde group being introduced on the aromatic ring of phenol, ortho to the hydroxyl group. This is a general method used for the ortho-formylation of phenols.</p> <p>Answer the following questions :</p> <p>(a) What happens when phenol reacts with</p> <ol style="list-style-type: none"> <li><math>\text{Br}_2/\text{CS}_2</math></li> <li>Cone. <math>\text{HNO}_3</math></li> </ol> <p>(b) Why phenol does not undergo protonation readily ?</p> <p>(c) Which is a stronger acid — phenol or cresol ? Give reason.</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) Write the IUPAC name of the product formed in the Reimer-Tiemann reaction</p> | CBSE<br>2025 |

|       |        |     |
|-------|--------|-----|
| Value | (a)(i) | 1+1 |
|-------|--------|-----|

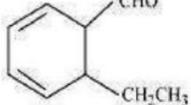
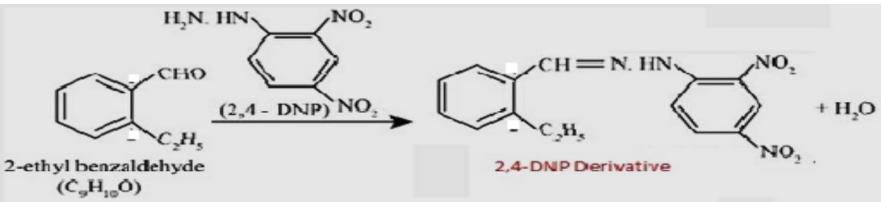
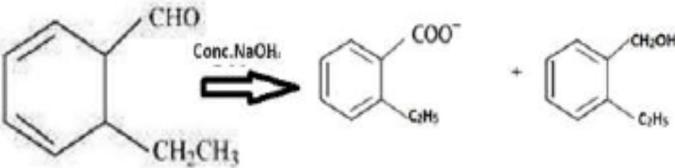


| points |                                                                                                                            |                             |
|--------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|        |                                          |                             |
|        |                                                                                                                            |                             |
|        | (b) Due to resonance, the lone pair of electrons on oxygen is not easily available for protonation.                        | 1                           |
|        | (c) Phenol<br>Due to electron releasing effect (+I effect) of methyl group/ phenoxide ion formed is less stable in cresol. | $\frac{1}{2} + \frac{1}{2}$ |
|        | <b>OR</b>                                                                                                                  |                             |
|        | (c) 2-Hydroxybenzaldehyde                                                                                                  | 1                           |






## Chapter 8

### Aldehydes , Ketones & Carboxylic Acids

| Q. No. | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                            | Main / Comptt With marks |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1      | The acid formed when propyl magnesium bromide is treated with $\text{CO}_2$ followed by acid hydrolysis is:<br>(A) $\text{C}_3\text{H}_7\text{COOH}$<br>(B) $\text{C}_2\text{H}_5\text{COOH}$ | CBSE<br>2025             |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                     | (C) $\text{CH}_3\text{COOH}$<br>(D) $\text{C}_3\text{H}_7\text{OH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>2</b>            | Which of the following does not undergo Aldol condensation ?<br>(A) $\text{CH}_3\text{CHO}$<br>(B) $\text{CH}_3\text{COCH}_3$<br>(C) $\text{CH}_3\text{CH}_2\text{CHO}$<br>(D) $\text{C}_6\text{H}_5\text{CHO}$                                                                                                                                                                                                                                                                                                                                                                      | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
| <b>3</b>            | Which of the following compounds is most reactive towards nucleophilic addition reactions ?<br>(A) $\text{CH}_3\text{CHO}$<br>(B) $\text{CH}_3\text{COCH}_3$<br>(C) $\text{C}_6\text{H}_5\text{CHO}$<br>(D) $\text{C}_6\text{H}_5\text{COCH}_3$                                                                                                                                                                                                                                                                                                                                      | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
|                     | For questions number 1 below, two statements are given —one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true |                                                               |
| <b>1</b>            | <b>Assertion (A) :</b> Bromination of benzoic acid gives m-bromobenzoic acid.<br><b>Reason (R) :</b> Carboxyl group acts as a deactivating and meta-directing group.                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                                      |
|                     | <b>Short answers type questions with Value Points (2 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| <b>1</b>            | Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal ? Justify your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CBSE<br/>2025</b>                                          |
| <b>Value points</b> | <ul style="list-style-type: none"> <li>• Less reactive,</li> <li>• The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon atom of the carbonyl group present in propanal.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                | <b>1</b><br><b>1</b>                                          |
| <b>2</b>            | Account for the following :<br>(i) $\text{CH}_3\text{CHO}$ is more reactive than $\text{CH}_3\text{COCH}_3$ towards reaction with HCN.<br>(ii) Carboxylic acids are higher boiling liquids than aldehydes and ketones.                                                                                                                                                                                                                                                                                                                                                               | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |




|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>Value points</b>                                             | (i) In $\text{CH}_3\text{CHO}$ carbonyl carbon is more electrophilic and has less steric hinderance than $\text{CH}_3\text{COCH}_3$ .<br>(ii) Due to intermolecular hydrogen bonding in carboxylic acids / due to dimer formation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>1                                                        |
| <b>3</b>                                                        | Give chemical tests to distinguish between the following pair of compounds :<br>(i) Propanal and Propanone<br>(ii) Benzaldehyde and Benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value points</b>                                             | (i) Add $\text{NaOH} + \text{I}_2$ to both the compounds separately and heat. Propanone will form yellow precipitate of $\text{CHI}_3$ whereas propanal will not.<br>(ii) Add $\text{NaHCO}_3$ to both the compounds separately. Benzoic acid will give the brisk effervescence of $\text{CO}_2$ while benzaldehyde does not.                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1                                                        |
| <b>Short answers type questions with Value Points (3 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |
| <b>1</b>                                                        | Give plausible explanation for each of the following :<br>(a) Sodium hydrogen sulphite is used for separation and purification of aldehydes.<br>(b) 2,2,6-trimethylcyclohexanone does not form cyanohydrin.<br>(c) Only one $-\text{NH}_2$ group of semicarbazide is involved in the formation of semicarbazone.                                                                                                                                                                                                                                                                                                                                                                                      | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value points</b>                                             | (a) Because aldehydes form water soluble hydrogensulphite addition compounds which can be converted back to the aldehydes on treating it with dilute mineral acid or alkali.<br>(b) Due to steric hindrance created by three methyl groups / Due to steric hindrance.<br>(c) The other $-\text{NH}_2$ group is in resonance with the carbonyl group.                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1                                                   |
| <b>2</b>                                                        | Explain the following reactions :<br>(a) Rosenmund's Reduction<br>(b) Cannizzaro's reaction<br>(c) Hell-Volhard Zelinsky reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b>                                             | <p>a) When an acid chloride is treated with <math>\text{H}_2</math>, <math>\text{Pd-BaSO}_4</math> an aldehyde is formed.</p> <p></p> <p>b) When aldehyde with no <math>\alpha</math>-hydrogen atom is treated with conc. KOH, it undergoes disproportionation to form alcohol and carboxylate ion.</p> <p></p> <p>c) When carboxylic acids having an <math>\alpha</math>-hydrogen are halogenated with <math>\text{Cl}_2/\text{Br}_2</math> in presence of red phosphorous, <math>\alpha</math>-halogen acids are formed</p> | <b>1x3=3</b>                                                  |

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                                         | $\text{R-CH}_2\text{-COOH} \xrightarrow[\text{(ii) H}_2\text{O}]{\text{(i) X}_2/\text{Red phosphorus}} \text{R-CH}-\text{COOH}$ <p style="text-align: center;"><b>X</b></p> <p style="text-align: center;"><b>X = Cl, Br</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |
| 3                                                       | <p>Draw the structures of major product(s) in each of the following reactions:</p> <p>(a)  <math>\xrightarrow{[\text{Ag}(\text{NH}_3)_2]^+ \text{OH}^-}</math></p> <p>(b)  <math>\xrightarrow{\text{NaO}I}</math></p> <p>(c)  <math>\xrightarrow{\text{NaCN/HCl}}</math></p>                                                                                                                                                                                                                                                                                              | CBSE<br>2024                                       |
| Value points                                            | <p>a) </p> <p>b) </p> <p>c) </p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1x3=3                                              |
| <b>Case based questions with Value Points (4 marks)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 1                                                       | <p>Aldehydes and ketones undergo nucleophilic addition reactions on to the carbonyl group but carboxylic acids do not undergo nucleophilic addition reaction. The alpha (<math>\alpha</math>)-hydrogens of aldehydes and ketones are acidic in nature. Therefore aldehydes and ketones having at least one <math>\alpha</math>-hydrogen undergo Aldol condensation. Aldehydes are easily oxidized by mild oxidizing agents such as Tollen's reagent and Fehling reagent.</p> <p>(a) Why does methanal not undergo Aldol condensation ?</p> <p>(b) Why are -hydrogens of aldehydes and ketones acidic in nature ?</p> <p>(c) (i) Why are aldehydes easily oxidised as compared to ketones ?</p> <p>     (ii) Why is addition of sodium hydrogen sulphite to aldehydes used for separation and purification of aldehydes ?</p> | CBSE<br>2024<br>(Visually<br>impaired<br>students) |

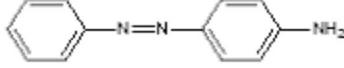
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                     | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|                     | (c) What happens when :<br>(i) ethanal is treated with dilute NaOH ?<br>(ii) propanone is treated with HCN ?                                                                                                                                                                                                                                                                                                                    |                      |
| <b>Value points</b> | (a) Due to the absence of $\alpha$ – hydrogen atom<br>(b) Due to resonance stabilized conjugate base.<br>(c) (i) Because oxidation of aldehydes involve cleavage of C-H bond which is easier than C-C bond.<br>(ii) Because the addition compounds are water soluble and can be converted back to original carbonyl compounds by treating them with dilute mineral acid or alkali.<br>(c) (i) 3 – hydroxybutanal is formed      | 1<br>1<br>1+1<br>1+1 |
|                     | $2 \text{CH}_3\text{-CHO} \xrightleftharpoons{\text{dil. NaOH}} \text{CH}_3\text{-CH(OH)-CH}_2\text{-CHO}$ <p style="text-align: center;">Ethanral</p> <p style="text-align: center;">3-Hydroxybutanal</p>                                                                                                                                                                                                                      |                      |
|                     | (ii) Propanone cyanohydrin is formed                                                                                                                                                                                                                                                                                                                                                                                            |                      |
|                     | $\text{H}_3\text{C}-\text{C}(\delta^+)=\text{O} + \text{H}_3\text{C}-\text{C}(\delta^-)\text{CN} \rightleftharpoons \text{H}_3\text{C}-\text{C}(\text{CN})-\text{OH}$ <p style="text-align: center;">Cyanohydrin</p>                                                                                                                                                                                                            |                      |
|                     | <b>Long answer type questions with Value Points (5 marks)</b>                                                                                                                                                                                                                                                                                                                                                                   |                      |
| <b>1</b>            | (a) Carry out the following conversions :<br>(i) Ethanal to But-2-enal<br>(ii) Propanoic acid to ethane<br>(b) An alkene A with molecular formula $\text{C}_5\text{H}_{10}$ on ozonolysis gives a mixture of two compounds B and C. Compound B gives positive Fehling test and also reacts with iodine and NaOH solution. Compound C does not give Fehling solution test but forms iodoform. Identify the compounds A, B and C. | CBSE<br>2025         |
| <b>Value points</b> | (a) (i) $2\text{CH}_3\text{-C}(=\text{O})\text{-H} \xrightarrow{\text{OH}^-} \text{CH}_3\text{-CH(OH)-CH}_2\text{-CHO} \xrightarrow{\Delta} \text{CH}_3\text{-CH=CH-CHO}$ (ii) $\text{CH}_3\text{CH}_2\text{COOH} + \text{NaOH} + \text{CaO} + \text{heat} \rightarrow \text{CH}_3\text{-CH}_3 \quad \text{B} = \text{CH}_3\text{CHO} /$ Ethanal<br>C = $\text{CH}_3\text{COCH}_3$ / Acetone / Propanone                        | 1+1<br>1<br>1<br>1   |
| <b>2</b>            | An organic compound (A) (molecular formula $\text{C}_8\text{H}_{16}\text{O}_2$ ) was hydrolysed with dilute sulphuric acid to get a carboxylic acid (B) and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives But-1-ene. Identify (A), (B) and (C) and write chemical equations for the reactions involved.                                                                             | CBSE<br>2025         |
| <b>Value points</b> | A = $\text{C}_3\text{H}_7\text{COOC}_4\text{H}_9$ / Butyl butanoate<br>B = $\text{C}_3\text{H}_7\text{COOH}$ / Butanoic acid                                                                                                                                                                                                                                                                                                    | 1<br>1               |

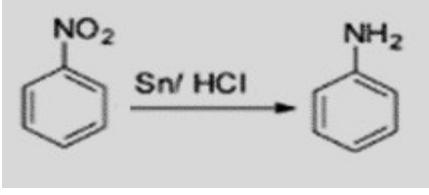
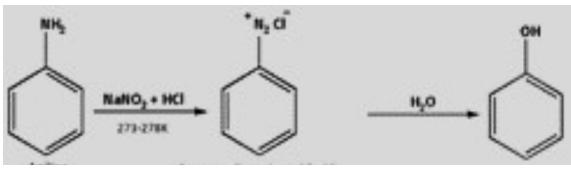


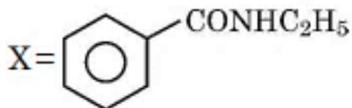
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                     | <p>(i) <br/> <math>\text{CH}_3\text{COCH}_3 \xrightarrow[\text{Conc. HCl}]{\text{Zn-Hg}} \text{CH}_3\text{CH}_2\text{CH}_3</math></p> <p>(II)</p> <p>(ii)(I) Benz aldehyde will form a silver mirror on warming it with Tollens' reagent, whereas Phenol will not.</p> <p>(II) Butan-2-one on heating with NaOH &amp; I<sub>2</sub> will give yellow ppt of CHI<sub>3</sub>, whereas butanal will not.</p>                                                                                                                                                                                                                                                                         | <p>1</p> <p>1</p>                                     |
| <p>5</p>            | <p>(a) 'A' and 'B' are two functional isomers of compound C<sub>4</sub>H<sub>8</sub>O. On heating with NaOH and I<sub>2</sub>, isomer 'B' forms yellow precipitate of iodoform whereas isomer 'A' does not form any precipitate.</p> <p>(i) Identify 'A' and 'B'.</p> <p>(ii) What happens when isomer 'A' is treated with Zn(Hg) in the presence of Conc. HCl ?</p> <p>(iii) Write the reaction of isomer 'B' with NaOH and I<sub>2</sub>.</p> <p>(b) Arrange the following in the increasing order of their property as indicated :</p> <p>(i) Ethanol, Ethanoic acid, Ethanal (boiling point).</p> <p>(ii) Ethanal, Methanal, acetone (reactivity towards addition of HCN).</p> | <p>CBSE<br/>2025<br/>(Visually impaired students)</p> |
| <p>Value points</p> | <p>a)i)A: CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO , B: CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub></p> <p>ii)n-Butane is formed / Chemical equation</p> <p>iii) <math>\text{CH}_3\text{-CO-CH}_2\text{-CH}_2\text{-CH}_3 \xrightarrow{\text{NaOH / I}_2} \text{CHI}_3 + \text{CH}_3\text{CH}_2\text{CH}_2\text{COONa}</math></p> <p>b)i)ethanal &lt; ethanol &lt; ethanoic acid</p> <p>ii)acetone &lt; ethanal &lt; methanol</p>                                                                                                                                                                                                                                            | <p>1x3=3</p> <p>1</p> <p>1</p>                        |
| <p>6</p>            | <p>(a) Explain Aldol Condensation with an example. Why alpha (α) hydrogen of aldehydes and ketones are acidic in nature ?</p> <p>(b) Give simple chemical test to distinguish between the following compounds :</p> <p>(i) Benzoic acid and Benzaldehyde</p> <p>(ii) Ethanal and Propanal</p>                                                                                                                                                                                                                                                                                                                                                                                      | <p>CBSE<br/>2025<br/>(Visually impaired students)</p> |
| <p>Value points</p> | <p>a) Aldehydes and ketones having at least one α-hydrogen undergo a reaction in the presence of dilute alkali to form β-hydroxy aldehydes (aldol) or β-hydroxy ketones (ketol), respectively.</p> <p><math display="block">2 \text{CH}_3\text{-CHO} \xrightleftharpoons[\text{Ethanal}]{\text{dil. NaOH}} \text{CH}_3\text{-CH(OH)-CH}_2\text{-CHO}</math></p> <p>• Due to the strong electron withdrawing effect of the carbonyl group and</p>                                                                                                                                                                                                                                   | <p>1+1</p> <p>1</p>                                   |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                     | <p>resonance stabilisation of the conjugate base.</p> <p>b)i) Add <math>\text{NaHCO}_3</math> to both the compounds, benzoic acid gives brisk effervescence while benzaldehyde does not.</p> <p>ii) Add <math>\text{NaOH}</math> and <math>\text{I}_2</math> to both the compounds and heat, ethanal forms yellow precipitate of iodoform while propanal does not.</p>                                                                                                                                                                                                                                                    | 1                |
| 7                   | <p>An organic compound (A) with the molecular formula <math>\text{C}_9\text{H}_{10}\text{O}</math> forms 2, 4-DNP derivative, reduces Fehling solution and undergoes Cannizzaro reaction. On vigorous oxidation, it gives 1, 2-benzene dicarboxylic acid.</p> <p>(i) Identify the compound (A) and write its IUPAC name.</p> <p>(ii) Write the reaction of compound (A) with</p> <ol style="list-style-type: none"> <li>2,4-Dinitrophenyl hydrazine and</li> <li>Fehling solution</li> </ol> <p>(iii) Write the equation of compound (A) when it undergoes Cannizzaro reaction.</p>                                       | <b>CBSE 2024</b> |
| <b>Value points</b> | <p>(i)</p>  <p>2-Ethylbenzaldehyde (A)</p> <p>(ii) (1)</p>  <p>(2) Aromatic aldehydes do not give fehling's test</p> <p>(iii)</p>                                                                                                                                                                                                                                 | 1+1              |
| 8                   | <p>(i) Account for the following:</p> <ol style="list-style-type: none"> <li>The alpha (<math>\alpha</math>)-hydrogens of aldehydes and ketones are acidic in nature.</li> <li>Oxidation of aldehydes is easier than ketones.</li> </ol> <p>(ii) Arrange the following in:</p> <ol style="list-style-type: none"> <li>Decreasing reactivity towards nucleophilic addition reaction<br/>propanal, acetone, benzaldehyde.</li> <li>Increasing order of boiling point:<br/>Propane, Ethanol, Dimethylether, Propanal</li> </ol> <p>(iii) Give simple chemical test to distinguish between Benzoic acid and Benzaldehyde.</p> | <b>CBSE 2024</b> |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <b>Value points</b> | <p>(i) (1) Electron withdrawing nature of carbonyl group/ Due to resonance stabilization of the conjugate base.<br/> (2) Due to cleavage of C-H bond in aldehydes is easier than C-C bond in Ketones</p> <p>(ii) (1) propanal &gt; benzaldehyde &gt; Acetone<br/> (2) Propane &lt; dimethyl ether &lt; propanal &lt; ethanol</p> <p>(iii) Benzoic acid will give brisk effervescence on reacting with <math>\text{NaHCO}_3</math> whereas in benzaldehyde does not.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1+1</b><br><b>1+1</b><br><b>1</b> |
| <b>9</b>            | <p>(i) Explain with the help of chemical reaction when :<br/> (I) Acetone is treated with semicarbazide.<br/> (II) Two molecules of benzaldehyde are treated with conc. <math>\text{NaOH}</math>.<br/> (III) Butan-2-one is treated with <math>\text{Zn/Hg}</math> and conc. <math>\text{HCl}</math>.</p> <p>(ii) Arrange the following in the increasing order of their acidic strength :<br/> (I) <math>\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH}</math>, <math>\text{BrCH}_2\text{CH}_2\text{CH}_2\text{COOH}</math>,<br/> <math>\text{CH}_3\text{CHBrCH}_2\text{COOH}</math>, <math>\text{CH}_3\text{CH}_2\text{CHBrCOOH}</math><br/> (II) Benzoic acid, 4-Methoxybenzoic acid, 4-Nitrobenzoic acid<br/> 3,4-Dinitrobenzoic acid</p>                                                                                                                                                                                                                                                                                                                                                                                   | <b>CBSE<br/>COMPTT.<br/>2024</b>     |
| <b>Value points</b> | <p>(i)<br/> (I)</p> $\begin{array}{c} \text{H}_3\text{C} \\   \\ \text{C}=\text{O} \end{array} + \begin{array}{c} \text{O} \\    \\ \text{H}_2\text{N}-\text{NH}-\text{C}-\text{NH}_2 \end{array} \longrightarrow \begin{array}{c} \text{H}_3\text{C} \\   \\ \text{C}=\text{N}-\text{NH}-\text{C}-\text{NH}_2 \end{array}$ <p>(II)</p> $2 \begin{array}{c} \text{C}_6\text{H}_5 \\   \\ \text{CHO} \end{array} + \text{Conc. NaOH} \xrightarrow{\Delta} \begin{array}{c} \text{C}_6\text{H}_5 \\   \\ \text{CH}_2\text{OH} \end{array} + \begin{array}{c} \text{C}_6\text{H}_5 \\   \\ \text{COONa} \end{array}$ <p>(III)</p> $\text{CH}_3\text{COCH}_2\text{CH}_3 \xrightarrow[\text{HCl}]{\text{Zn-Hg}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3$ <p>(ii)</p> <p>(I) <math>\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH} &lt; \text{BrCH}_2\text{CH}_2\text{CH}_2\text{COOH} &lt; \text{CH}_3\text{CH}(\text{Br})\text{CH}_2\text{COOH} &lt; \text{CH}_3\text{CH}_2\text{CH}(\text{Br})\text{COOH}</math></p> <p>(II) 4-Methoxybenzoic acid &lt; Benzoic acid &lt; 4-Nitrobenzoic acid &lt; 3,4-Dinitrobenzoic acid</p> | <b>1x3=3</b><br><b>1x2=2</b>         |
| <b>10</b>           | <p>(i) Identify the products A, B, C and D in the following sequence of reactions :</p> $\begin{array}{ccccc} \text{CH}_3\text{CHO} & \xrightarrow{[\text{O}]} & \text{A} & \xrightarrow{\text{PCl}_5} & \text{B} \\ & & & & \downarrow (\text{CH}_3)_2\text{Cd} \\ & & & & \text{C} \\ & & & \xleftarrow[\text{Conc. HCl}]{\text{Zn - Hg}} & \text{D} \end{array}$ <p>(ii) How will you bring about the following conversions ? 3'1=3</p> <p>(I) Propanone to Propene<br/> (II) Benzoic acid to Benzaldehyde<br/> (III) Ethanal to But-2-enal</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>CBSE<br/>COMPTT.<br/>2024</b>     |


|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| <b>Value points</b> | <p>(i) A = <math>\text{CH}_3\text{COOH}</math> / Ethanoic acid / Acetic acid<br/> B = <math>\text{CH}_3\text{COCl}</math> / Ethanoyl chloride / Acetyl chloride<br/> C = <math>\text{CH}_3\text{COCH}_3</math> / Propanone / Acetone<br/> D = <math>\text{CH}_3\text{CH}_2\text{CH}_3</math> / Propane</p> <p>(ii)</p> <p>(I)</p> $\text{CH}_3\text{COCH}_3 \xrightarrow{\text{LiAlH}_4} \text{H}_3\text{C}-\underset{\text{OH}}{\text{CH}}-\text{CH}_3 \xrightarrow[\text{Heat}]{\text{H}_2\text{SO}_4 \text{ (Conc.)}} \text{H}_3\text{C}-\text{CH}=\text{CH}_2$ <p>(II)</p> $\text{C}_6\text{H}_5\text{COOH} \xrightarrow{\text{SOCl}_2} \text{C}_6\text{H}_5\text{COCl} \xrightarrow[\text{Pd - BaSO}_4]{\text{H}_2} \text{C}_6\text{H}_5\text{CHO}$ <p>(III)</p> $2 \text{CH}_3\text{CHO} \xrightleftharpoons{\text{dil. NaOH}} \text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CHO} \xrightarrow[-\text{H}_2\text{O}]{\Delta} \text{CH}_3\text{CH}=\text{CH-CHO}$ | $\frac{1}{2} \times 4 = 2$<br>$1 \times 3 = 3$ |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|



## Chapter 9


### Amines

| Q. No.              | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main / Comptt With marks                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <b>1</b>            | The best reagent for converting propanamide into propanamine is<br>(A) excess H <sub>2</sub><br>(B) Br <sub>2</sub> in aqueous NaOH<br>(C) iodine in the presence of red phosphorus<br>(D) LiAlH <sub>4</sub> in ether                                                                                                                                                                                                                                                                                                                                                                                                                                        | CBSE<br>2025                                 |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b>                                     |
| <b>2</b>            | Which of the following amines has the highest boiling point ?<br>(A) 2,2-Dimethyl propanamine<br>(B) 3-Methylbutanamine<br>(C) 2-Methylbutanamine<br>(D) Pentanamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBSE<br>COMPTT.<br>2025                      |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b>                                     |
| <b>3</b>            | The Gabriel Phthalimide Synthesis is used for the preparation of<br>(A) Secondary amines<br>(B) Primary aromatic amines<br>(C) Tertiary amines<br>(D) Primary aliphatic amines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CBSE<br>2025<br>(Visually impaired students) |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b>                                     |
| <b>4</b>            | The correct name of the given reaction is<br>$\text{Ar}-\text{N}_2^+ \text{X}^- \xrightarrow{\text{Cu CN/KCN}} \text{Ar}-\text{CN} + \text{N}_2$<br>(A) Sandmeyer's reaction<br>(B) Gabriel Phthalimide synthesis<br>(C) Carbyl amine reaction<br>(D) Hoffmann bromamide degradation reaction                                                                                                                                                                                                                                                                                                                                                                 | CBSE<br>2024                                 |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b>                                     |
| <b>5</b>            | If amines are arranged in increasing order of their basic strength in gaseous phase, then the correct order will be :<br>(A) NH <sub>3</sub> < CH <sub>3</sub> NH <sub>2</sub> < (CH <sub>3</sub> ) <sub>3</sub> N < (CH <sub>3</sub> ) <sub>2</sub> NH<br>(B) NH <sub>3</sub> < (CH <sub>3</sub> ) <sub>2</sub> NH < (CH <sub>3</sub> ) <sub>3</sub> N < CH <sub>3</sub> NH <sub>2</sub><br>(C) (CH <sub>3</sub> ) <sub>3</sub> N < (CH <sub>3</sub> ) <sub>2</sub> NH < CH <sub>3</sub> NH <sub>2</sub> < NH <sub>3</sub><br>(D) NH <sub>3</sub> < CH <sub>3</sub> NH <sub>2</sub> < (CH <sub>3</sub> ) <sub>2</sub> NH < (CH <sub>3</sub> ) <sub>3</sub> N | CBSE<br>COMPTT.<br>2024                      |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b>                                     |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 6                   | The chemical test which can be used to distinguish between ethanamine and aniline is :<br>(A) Haloform test<br>(B) Tollens' test<br>(C) Azo dye test<br>(D) Hinsberg test                                                                                                                                                                                                                                                                                                                                                                                                            | CBSE<br>COMPTT.<br>2024                            |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                           |
| 7                   | Reduction of aromatic nitro compounds using Sn and HCl gives :<br>(A) Aromatic amide<br>(B) Aromatic oxime<br>(C) Aromatic primary amine<br>(D) Aromatic hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                 | CBSE<br>2024<br>(Visually<br>impaired<br>students) |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                           |
| 8                   | Methylamine reacts with $\text{HNO}_2$ to form :<br>(A) $\text{CH}_3\text{O}\text{N}=\text{O}$<br>(B) $\text{CH}_3\text{OCH}_3$<br>(C) $\text{CH}_3\text{OH}$<br>(D) $\text{CH}_3\text{CHO}$                                                                                                                                                                                                                                                                                                                                                                                         | CBSE<br>2024<br>(Visually<br>impaired<br>students) |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                           |
| 9                   | Which one of the following has the lowest $\text{pK}_b$ value ?<br>(A) Ammonia<br>(B) Aniline<br>(C) Methylamine<br>(D) Dimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                | CBSE<br>2024<br>(Visually<br>impaired<br>students) |
| <b>Value points</b> | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                           |
|                     | For questions number 1 below, two statements are given —one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :<br>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).<br>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).<br>(C) Assertion (A) is true, but Reason (R) is false.<br>(D) Assertion (A) is false, but Reason (R) is true |                                                    |
| 1                   | <b>Assertion (A)</b> : Acetanilide is less basic than aniline.<br><b>Reason (R)</b> : Acetylation of aniline results in decrease of electron density on nitrogen.                                                                                                                                                                                                                                                                                                                                                                                                                    | CBSE<br>COMPTT.<br>2024                            |
| <b>Value points</b> | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b>                                           |

| Short answers type questions with Value Points (2 marks) |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>1</b>                                                 | <p>Identify A and B in each of the following reaction sequence :</p> <p>(a) <math>\text{CH}_3\text{CH}_2\text{Cl} \xrightarrow{\text{NaCN}} \text{A} \xrightarrow{\text{H}_2/\text{Ni}} \text{B}</math></p> <p>(b) <math>\text{C}_6\text{H}_5\text{NH}_2 \xrightarrow[0-5^\circ\text{C}]{\text{NaNO}_2/\text{HCl}} \text{A} \xrightarrow[\text{H}^+]{\text{C}_6\text{H}_5\text{NH}_2} \text{B}</math></p>            | <b>CBSE<br/>2025</b>                                          |
| <b>Value points</b>                                      | <p>(a) A = <math>\text{CH}_3\text{CH}_2\text{CN}</math> ; B = <math>\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2</math></p> <p>(b) A = <math>\text{C}_6\text{H}_5\text{N}_2^+\text{Cl}^-</math> ; B = </p>                                                                                                                          | $\frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$    |
| <b>2</b>                                                 | <p>(a) Name the reaction which can be used to distinguish chemically between aniline and N,N-dimethylaniline.</p> <p>(b) Why can aniline not be prepared by the ammonolysis of chlorobenzene under normal conditions ?</p>                                                                                                                                                                                           | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value points</b>                                      | <p>(a) Carbylamine reaction</p> <p>(b) C – Cl bond is not cleaved easily by <math>\text{NH}_3</math> due to partial double bond character of C – Cl bond.</p>                                                                                                                                                                                                                                                        | <b>1</b><br><b>1</b>                                          |
| <b>3</b>                                                 | <p>How do you convert the following ?</p> <p>(i) Ethanenitrile to Ethanamine</p> <p>(ii) Benzenediazonium chloride to benzonitrile</p>                                                                                                                                                                                                                                                                               | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b>                                      | <p>(i) <math>\text{CH}_3\text{CN} \xrightarrow[\text{Na(Hg)}/\text{C}_2\text{H}_5\text{OH}]{\text{H}_2/\text{Ni}} \text{CH}_3\text{CH}_2\text{NH}_2</math></p> <p>or <math>\text{LiAlH}_4</math></p> <p>ii) </p>                                                                                                                  | <b>1+1</b>                                                    |
| <b>4</b>                                                 | <p>(i) Write a simple chemical test to distinguish between ethanamine and dimethylamine.</p> <p>(ii) What happens when <math>\text{CH}_3\text{CONH}_2</math> is heated with <math>\text{Br}_2</math> and an aqueous solution of <math>\text{NaOH}</math> ?</p>                                                                                                                                                       | <b>CBSE<br/>2025<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b>                                      | <p>i) Add chloroform with alc. KOH to both the compounds and heat, ethanamine will give foul smell of isocyanide while dimethylamine does not.</p> <p>ii) <math>\text{CH}_3\text{NH}_2</math> methanamine is formed</p> <p><math>\text{R}-\text{C}(=\text{O})-\text{NH}_2 + \text{Br}_2 + 4\text{NaOH} \longrightarrow \text{R}-\text{NH}_2 + \text{Na}_2\text{CO}_3 + 2\text{NaBr} + 2\text{H}_2\text{O}</math></p> | <b>1+1</b>                                                    |
| <b>5</b>                                                 | <p>Carry out the following conversions:</p> <p>(i) Nitrobenzene to Aniline</p> <p>(ii) Aniline to Phenol</p>                                                                                                                                                                                                                                                                                                         | <b>CBSE<br/>2024</b>                                          |

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |                            |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Value points                                                                        | <p>(i)</p>  <p>(ii)</p>                                                                                                                                                                                      | 1+1                        |
| 6                                                                                   | <p>(i) Write a chemical test to distinguish between Dimethyl amine and Ethanamine.</p> <p>(ii) Write the product formed when benzene diazonium chloride is treated with KI.</p>                                                                                                                                                                                                | CBSE 2024                  |
| Value points                                                                        | <p>(i) On reaction with alc. KOH and chloroform, ethanamine gives foul smelling isocyanide whereas dimethylamine does not.</p> <p>(ii) iodobenzene</p>                                                                                                                                                                                                                         | 1+1                        |
| <b>Short answers type questions with Value Points (3 marks)</b>                     |                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 1                                                                                   | <p>(a) Arrange the following compounds in increasing order of their boiling poi<br/> <math>(CH_3)_2NH</math>, <math>CH_3CH_2NH_2</math>, <math>CH_3CH_2OH</math>.</p> <p>(b) Give plausible explanation for each of the following :</p> <p>(i) Aromatic primary amines cannot be prepared by Gabriel Phthalimide synthesis.</p> <p>(ii) Amides are less basic than amines.</p> | CBSE 2025                  |
| Value points                                                                        | <p>(a) <math>(CH_3)_2NH &lt; CH_3CH_2NH_2 &lt; CH_3CH_2OH</math>.</p> <p>(b) (i) aromatic halides do not undergo nucleophilic substitution with the anion formed by phthalimide.</p> <p>(ii) Due to resonance the lone pair on nitrogen is less available for donation</p>                                                                                                     | <p>1</p> <p>1</p> <p>1</p> |
|  |                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 2                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                |                            |
| Value points                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |                            |
| Value points                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 3                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                |                            |



- Name: N-Ethylbenzamide.
- No, 'X' will not undergo the Hoffmann bromamide degradation reaction.
- As it is a N-substituted amide

Give reactions for the following :

1+1

CBSE 2024

1+1

CBSE 2025

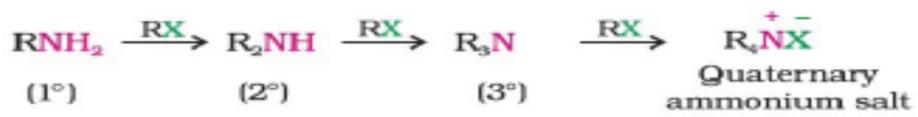
1

1

1

CBSE COMPTT. 2025

1/2 + 1/2


1

1

CBSE

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|              | <p>(i) Aniline does not undergo Friedel – Crafts reaction.<br/> (ii) <math>(\text{CH}_3)_2\text{NH}</math> is more basic than <math>(\text{CH}_3)_3\text{N}</math> in an aqueous solution.<br/> (iii) Ethyl amine is soluble in water whereas aniline is insoluble.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2025<br>(Visually impaired students)         |
| Value points | <p>i) Due to salt formation with aluminium chloride, the Lewis acid.<br/> ii) Due to more hydration and less steric hinderance.<br/> iii) Because it can form hydrogen bonds with water molecules, while aniline does not form due to bulky benzene molecule.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1                                  |
| 4            | <p>A compound ‘X’ with molecular formula <math>\text{C}_3\text{H}_9\text{N}</math> reacts with <math>\text{C}_6\text{H}_5\text{SO}_2\text{Cl}</math> to give a solid, insoluble in alkali. Identify ‘X’ and give the IUPAC name of the product. Write the reaction involved.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBSE<br>2024                                 |
| Value points | <p>X=</p> <div style="background-color: #e0e0e0; padding: 5px; display: inline-block;"> <math display="block">\begin{array}{c} \text{H}-\text{N}-\text{C} \text{ H}_3 \\   \\ \text{C}_2\text{H}_5 \end{array}</math> </div> <p>IUPAC name of the product- <b>N-Ethyl-N-methylbenzene sulphonamide</b></p> <div style="text-align: center;"> </div>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1+1                                          |
| 5            | <p>Give plausible explanation for the following :</p> <p>(a) Diazonium salts of aromatic amines are stable.<br/> (b) Aniline does not undergo Friedel-Crafts reaction.<br/> (c) Aniline on nitration gives a substantial amount of meta product.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CBSE<br>COMPTT.<br>2024                      |
| Value points | <p>(a) Due to resonance stabilisation of diazonium salts of aromatic amines.<br/> (b) Aniline forms salt with Lewis acid anhydrous <math>\text{AlCl}_3</math>.<br/> (c) Due to the formation of anilinium ion which is deactivating.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1                                  |
| 6            | <p>Explain the following :</p> <p>(a) Carbylamine reaction<br/> (b) Hoffmann bromamide degradation reaction<br/> (c) Ammonolysis</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CBSE<br>2024<br>(Visually impaired students) |
| Value points | <p>a) <b>Carbylamine Reaction:</b> Aliphatic and aromatic primary amines on heating with chloroform and ethanolic potassium hydroxide form isocyanides or carbylamines which are foul smelling substances.</p> $\text{R}-\text{NH}_2 + \text{CHCl}_3 + 3\text{KOH} \xrightarrow{\text{Heat}} \text{R}-\text{NC} + 3\text{KCl} + 3\text{H}_2\text{O}$ <p>b) <b>Hoffmann Bromamide reaction:</b> It is a method for preparation of primary amines by treating an amide with bromine in an aqueous or ethanolic solution of sodium hydroxide. The amine so formed contains one carbon less than that present in the amide.</p> $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{NH}_2 + \text{Br}_2 + 4\text{NaOH} \longrightarrow \text{R}-\text{NH}_2 + \text{Na}_2\text{CO}_3 + 2\text{NaBr} + 2\text{H}_2\text{O}$ <p>c) <b>Ammonolysis:</b> An alkyl or benzyl halide on reaction with an</p> | 1x3=3                                        |

ethanolic solution of ammonia undergoes nucleophilic substitution reaction in which the halogen atom is replaced by an amino ( $\text{NH}_2$ ) group. This process of cleavage of the C–X bond by ammonia molecule is known as ammonolysis.



## Biomolecules

| Q. No.              | MCQ (multiple-choice questions) with Value Points<br>(1 Mark each)                                                                                                                                               | Main / Comptt With marks                     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <b>1</b>            | Which of the following statements is not true about glucose ?<br>(A) It is an aldohexose.<br>(B) On heating with HI it forms n-hexane.<br>(C) It exists in furanose form.<br>(D) It does not give Schiff's test. | CBSE<br>2025                                 |
| <b>Value points</b> | (C)                                                                                                                                                                                                              | <b>1</b>                                     |
| <b>2</b>            | Glucose on reaction with $\text{Br}_2$ water gives :<br>(A) Gluconic acid<br>(B) Hexanoic acid<br>(C) Saccharic acid<br>(D) Glycolic acid                                                                        | CBSE<br>COMPTT.<br>2025                      |
| <b>Value points</b> | (A)                                                                                                                                                                                                              | <b>1</b>                                     |
| <b>3</b>            | Which of the following is a polysaccharide ?<br>(A) Maltose<br>(B) Glucose<br>(C) Cellulose<br>(D) Sucrose                                                                                                       | CBSE<br>2025<br>(Visually impaired students) |
| <b>Value points</b> | (C)                                                                                                                                                                                                              | <b>1</b>                                     |
| <b>4</b>            | The specific sequence in which amino acids are arranged in a protein is called its<br>(A) Primary structure<br>(B) Secondary structure<br>(C) Tertiary structure<br>(D) Quaternary structure                     | CBSE<br>2024                                 |
| <b>Value points</b> | (A)                                                                                                                                                                                                              | <b>1</b>                                     |
| <b>5</b>            | Nucleic acids are the polymers of :<br>(A) Nucleotides<br>(B) Nucleosides<br>(C) Bases<br>(D) Sugars                                                                                                             | CBSE<br>2024<br>(Visually impaired students) |
| <b>Value points</b> | (A)                                                                                                                                                                                                              | <b>1</b>                                     |
|                     | For questions number 1 to 3 below, two statements are given —one                                                                                                                                                 |                                              |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                     | <p>labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :</p> <p>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).</p> <p>(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).</p> <p>(C) Assertion (A) is true, but Reason (R) is false.</p> <p>(D) Assertion (A) is false, but Reason (R) is true</p>           |                                                               |
| <b>1</b>            | <p><b>Assertion (A)</b> : All naturally occurring <math>\alpha</math>-amino acids except glycine are optically active.</p> <p><b>Reason (R)</b> : Most naturally occurring amino acids have L-configuration.</p>                                                                                                                                                                                                                                                                                                                                          | <b>CBSE<br/>2025</b>                                          |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                                      |
| <b>2</b>            | <p><b>Assertion (A)</b> : Maltose is a reducing sugar.</p> <p><b>Reason (R)</b> : Maltose is composed of two glucose units in which C-1 of one glucose unit is linked to C-4 of another glucose unit.</p>                                                                                                                                                                                                                                                                                                                                                 | <b>CBSE<br/>COMPTT.<br/>2024</b>                              |
| <b>Value points</b> | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                                      |
| <b>3</b>            | <p><b>Assertion (A)</b> : Vitamin C cannot be stored in our body.</p> <p><b>Reason (R)</b> : Vitamin C is fat soluble and is excreted from the body in urine.</p>                                                                                                                                                                                                                                                                                                                                                                                         | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value points</b> | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                                      |
|                     | <b>Short answers type questions with Value Points (2 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
| <b>1</b>            | <p>Write the reactions involved when D-glucose is treated with the following reagents :</p> <p>(a) HCN</p> <p>(b) <math>\text{Br}_2</math> water</p>                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CBSE<br/>2025</b>                                          |
| <b>Value points</b> | <p>(a)</p> $  \begin{array}{ccc}  \text{CHO} & & \text{HC} \begin{array}{l} \text{---} \\ \text{---} \end{array} \text{CN} \\    & &   \text{---} \text{OH} \\  (\text{CHOH})_4 & \xrightarrow{\text{HCN}} & (\text{CHOH})_4 \\    & &   \\  \text{CH}_2\text{OH} & & \text{CH}_2\text{OH}  \end{array}  $<br><p>(b)</p> $  \begin{array}{ccc}  \text{CHO} & & \text{COOH} \\    & &   \\  (\text{CHOH})_4 & \xrightarrow{\text{Br}_2/\text{H}_2\text{O}} & (\text{CHOH})_4 \\    & &   \\  \text{CH}_2\text{OH} & & \text{CH}_2\text{OH}  \end{array}  $ | <b>1+1</b>                                                    |
| <b>2</b>            | <p>Give one point of difference between the following :</p> <p>(a) Starch and Cellulose</p> <p>(b) Primary and Secondary structure of protein</p>                                                                                                                                                                                                                                                                                                                                                                                                         | <b>CBSE<br/>COMPTT.<br/>2025</b>                              |
| <b>Value</b>        | (a) Starch is made up of $\alpha$ -D glucose units while cellulose is made up of                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b>                                                      |

|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                          |                                        |                                           |                     |                       |                      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|----------------------------------------|-------------------------------------------|---------------------|-----------------------|----------------------|
| <b>points</b>                          | <p><math>\beta</math>-D glucose units.</p> <p>(b) Amino acids linked with each other in a specific sequence is a primary structure while secondary structure refers to the shape in which a long polypeptide chain can exist.</p>                                                                                                                                                                                                                                         | <b>1</b>                                                   |                          |                                        |                                           |                     |                       |                      |
| <b>3</b>                               | What is the effect of denaturation on the structures of protein ? Give one example each of fibrous protein and globular protein.                                                                                                                                                                                                                                                                                                                                          | <b>CBSE 2025<br/>(Visually impaired students)</b>          |                          |                                        |                                           |                     |                       |                      |
| <b>Value points</b>                    | The hydrogen bonds are disturbed. Due to this, globules unfold and helix get uncoiled and protein loses its biological activity<br>Fibrous protein- keratin/ Myosin<br>Globular protein- Insulin / Albumin                                                                                                                                                                                                                                                                | <b>1</b><br>$\frac{1}{2} + \frac{1}{2}$                    |                          |                                        |                                           |                     |                       |                      |
| <b>4</b>                               | Classify the following sugars into monosaccharides and disaccharides:<br>Galactose, Glucose, Lactose and Maltose                                                                                                                                                                                                                                                                                                                                                          | <b>CBSE 2024</b>                                           |                          |                                        |                                           |                     |                       |                      |
| <b>Value points</b>                    | Monosaccharides: Galactose, Glucose<br>Disaccharides : Lactose, Maltose                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$ |                          |                                        |                                           |                     |                       |                      |
| <b>5</b>                               | Write the reaction of glucose with :<br>(a) HI<br>(b) Br <sub>2</sub> water                                                                                                                                                                                                                                                                                                                                                                                               | <b>CBSE COMPTT. 2024</b>                                   |                          |                                        |                                           |                     |                       |                      |
| <b>Value points</b>                    | <p>(a)</p> $  \begin{array}{c}  \text{CHO} \\    \\  (\text{CHOH})_4 \\    \\  \text{CH}_2\text{OH}  \end{array}  \xrightarrow{\text{HI, } \Delta} \text{CH}_3\text{--CH}_2\text{--CH}_2\text{--CH}_2\text{--CH}_2\text{--CH}_3  $ <p>(b)</p> $  \begin{array}{ccc}  \text{CHO} & & \text{COOH} \\    & &   \\  (\text{CHOH})_4 & \xrightarrow{\text{Br}_2 \text{ water}} & (\text{CHOH})_4 \\    & &   \\  \text{CH}_2\text{OH} & & \text{CH}_2\text{OH}  \end{array}  $ | <b>1+1</b>                                                 |                          |                                        |                                           |                     |                       |                      |
|                                        | <b>Short answers type questions with Value Points (3 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                          |                                        |                                           |                     |                       |                      |
| <b>1</b>                               | (a) What is the difference between native protein and denatured protein (b) Which one of the following is a disaccharide ?<br>Glucose, Lactose, Amylose, Fructose<br>(c) Which vitamin is responsible for the coagulation of blood ?                                                                                                                                                                                                                                      | <b>CBSE 2025</b>                                           |                          |                                        |                                           |                     |                       |                      |
| <b>Value points</b>                    | <p>(a)</p> <table border="1"> <tr> <td><b>Native protein</b></td> <td><b>Denatured protein</b></td> </tr> <tr> <td>Three-dimensional structure is intact.</td> <td>Three-dimensional structure is destroyed.</td> </tr> <tr> <td>Biologically active</td> <td>Biologically inactive</td> </tr> </table> <p>(b) Lactose<br/>(c) Vitamin K</p>                                                                                                                              | <b>Native protein</b>                                      | <b>Denatured protein</b> | Three-dimensional structure is intact. | Three-dimensional structure is destroyed. | Biologically active | Biologically inactive | <b>1</b><br><b>1</b> |
| <b>Native protein</b>                  | <b>Denatured protein</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |                          |                                        |                                           |                     |                       |                      |
| Three-dimensional structure is intact. | Three-dimensional structure is destroyed.                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                          |                                        |                                           |                     |                       |                      |
| Biologically active                    | Biologically inactive                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                          |                                        |                                           |                     |                       |                      |
|                                        | <b>Case based questions with Value Points (4 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                          |                                        |                                           |                     |                       |                      |

| 1                                                                             | <p>Reduce carbohydrates, increase protein to check diabetes, older people may need greater carbohydrates reduction. An average Indian derives 61 – 64% of energy from consumption of food rich in carbohydrates. A study published in the Journal of Diabetes Care has recommended reducing this to 49 – 56% for remission or prevention of Type 2 diabetes, one of the leading cause of death worldwide. Along with reducing carbohydrate intake, the study suggests that one should also increase protein intake up to 14 – 20% of the total energy consumption. Fat should contribute not more than 21 – 27% of the total energy consumption. In simple words, 50% of the plate should consist of fruits and green vegetables, 25% carbohydrates, 25% food rich in protein. Type 1 diabetes is due to deficiency of insulin.</p> <p>Answer the following questions :</p> <p>(a) Write any two functions of carbohydrates.</p> <p>(b) What are monosaccharides ?</p> <p>(c) (i) Write the name of the deficiency diseases caused due to the lack of Vitamin D.</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) (ii) Name the hormone which maintains the glucose level within narrow limit in the blood.</p> | CBSE<br>COMPTT.<br>2025                            |                        |                                                                               |                                                                                    |             |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|
| <b>Value points</b>                                                           | <p>(a) Biofuel, provide energy, an instant source of energy, energy storage, cell wall formation</p> <p>(b) A carbohydrate that cannot be hydrolysed further to give a simpler unit of polyhydroxy aldehyde or ketone.</p> <p>(c) (i) Rickets (in children) / Osteomalacia (in adults).</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) (ii) Insulin.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1+1</b><br><b>1</b><br><b>1</b><br><b>1</b>     |                        |                                                                               |                                                                                    |             |
| 2                                                                             | <p>Carbohydrates are optically active polyhydroxy aldehydes or ketones or molecules which provide such units on hydrolysis. They are broadly classified into three groups – monosaccharides, oligosaccharides and polysaccharides. Monosaccharides are held together by glycosidic linkage to form disaccharides like sucrose, maltose. Another biomolecule : proteins are polymers of <math>\alpha</math>-amino acids which are linked by peptide bonds. On the basis of number of amino group and carboxyl group, amino acids are classified as acidic, basic or neutral amino acids. Amino acids are amphoteric in nature.</p> <p>(a) What is difference between glycosidic linkage and peptide linkage ?<br/>The pentacetate of glucose does not react with Hydroxyl amine.<br/>What does it indicate ?</p> <p>(b) Define Oligosaccharides with an example.</p> <p style="text-align: center;"><b>OR</b></p> <p>(b) Why amino acids are amphoteric in nature ?</p> <p>(c) Define Acidic amino acids.</p>                                                                                                                                                                                                           | CBSE<br>2025<br>(Visually<br>impaired<br>students) |                        |                                                                               |                                                                                    |             |
| <b>Value points</b>                                                           | <table border="1" data-bbox="235 1648 1308 1805"> <tr> <th data-bbox="235 1648 695 1693"><b>Glycosidic linkage</b></th><th data-bbox="695 1648 1308 1693"><b>Peptide linkage</b></th></tr> <tr> <td data-bbox="235 1693 695 1805">A glycosidic linkage is an oxide(-O-) linkage that joins two monosaccharides.</td><td data-bbox="695 1693 1308 1805">A peptide linkage is an amide (-CONH-) linkage that forms between two amino acids.</td></tr> </table> <p>• Due to absence of free —CHO group.</p> <p>b) Carbohydrates that yield two to ten monosaccharide units, on hydrolysis. For example- maltose/ sucrose</p> <p style="text-align: center;"><b>OR</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Glycosidic linkage</b>                          | <b>Peptide linkage</b> | A glycosidic linkage is an oxide(-O-) linkage that joins two monosaccharides. | A peptide linkage is an amide (-CONH-) linkage that forms between two amino acids. | 1<br>1<br>1 |
| <b>Glycosidic linkage</b>                                                     | <b>Peptide linkage</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                        |                                                                               |                                                                                    |             |
| A glycosidic linkage is an oxide(-O-) linkage that joins two monosaccharides. | A peptide linkage is an amide (-CONH-) linkage that forms between two amino acids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                        |                                                                               |                                                                                    |             |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                     | <p>b) Because it exists in zwitter ionic form which reacts with both acids and bases.<br/>     c) Amino acids which contain more carboxyl groups as compared to amino groups.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1</b>                                         |
| <b>3</b>            | <p>Certain organic compounds are required in small amounts in our diet but their deficiency causes specific disease. These compounds are called vitamins. Most of the vitamins cannot be synthesized in our body but plants can synthesize almost all of them. So they are considered as essential food factors. However, the bacteria of the gut can produce some of the vitamins required by us. All the vitamins are generally available in our diet. The term 'vitamin' was coined from the words vital + amine, since the earlier identified compounds had amino group. Vitamins are classified into two groups depending upon their solubility in water or fat namely-fat soluble vitamins and water soluble vitamins.</p> <p>Answer the following questions:</p> <p>(a) What is the other name of vitamin B<sub>6</sub>?<br/>     (b) Name the vitamin whose deficiency causes increased blood clotting time.<br/>     (c) Xerophthalmia is caused by the deficiency of which vitamin? Give two sources of this vitamin.</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) Why can't vitamin C be stored in our body? Name the disease caused by the deficiency of this vitamin.</p> | <b>CBSE<br/>2024</b>                             |
| <b>Value points</b> | <p>a) Pyridoxine<br/>     b) Vitamin K<br/>     c) Vitamin A<br/>     Sources-Fish liver oil, carrots.</p> <p style="text-align: center;"><b>OR</b></p> <p>c) Water soluble and are readily excreted in urine Scurvy</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b><br><b>1</b><br><b>1+1</b><br><b>1+1</b> |
| <b>4</b>            | <p>The particles in the nucleus of the cell, responsible for heredity, are called chromosomes which are made up of proteins and another type of biomolecules called nucleic acids. These are mainly of two types, DNA and RNA. Nucleic acids on hydrolysis yield a pentose sugar, phosphoric acid and nitrogen containing heterocyclic compound. Nucleic acids have a very diverse set of functions, such as cell creation, the storage and processing of genetic information, protein synthesis and the generation of energy cells. Although their functions may differ, the structure of DNA and RNA are very similar, with only a few fundamental differences in their molecular make-up.</p> <p>Based on the above information, answer the following questions :</p> <p>(a) Write two functions of DNA.<br/>     (b) What products will be formed when a nucleotide from DNA containing Adenine is hydrolyzed ?<br/>     (c) (i) What are nucleic acids ? What is the difference between nucleotide and nucleoside ?</p> <p style="text-align: center;"><b>OR</b></p> <p>(c) (ii) Give one similarity and one difference between DNA and RNA.</p>                                             | <b>CBSE<br/>COMPTT.<br/>2024</b>                 |
| <b>Value points</b> | <p>(a) To store information and to transfer traits from one generation to another.<br/>     (b) Deoxyribose sugar, Adenine and phosphoric acid.<br/>     (c) (i) The polymer of nucleotides which are responsible for heredity.<br/>     Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid.</p> <p style="text-align: center;"><b>OR</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>½ ½</b><br><b>1</b><br><b>1+1</b>             |

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                         | (c) (ii) <b>Similarity:</b> Both are nucleic acids and are found in the nucleus of the cell.<br><b>Difference:</b> DNA has a double strand while RNA is single stranded                                                                                                                                                                                                                                                                                              | <b>1+1</b>                                                    |
|                         | <b>Long answer type questions with Value Points (5 marks)</b>                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |
| <b>1</b>                | <p>Do any five of the following :</p> <p>(a) Pentaacetate of glucose does not react with hydroxylamine. Give reason.</p> <p>(b) Why do amino acids behave like salts ?</p> <p>(c) Why must water soluble vitamins be taken regularly in diet ?</p> <p>(d) Why are the two strands in DNA complementary to each other ?</p> <p>(e) What happens when D-glucose is heated with HI ?</p> <p>(f) What is meant by glycosidic linkage ?</p> <p>(g) What are enzymes ?</p> | <b>CBSE<br/>2024<br/>(Visually<br/>impaired<br/>students)</b> |
| <b>Value<br/>points</b> | <p>(a) Because – CHO group of pentaacaetate of glucose is not free</p> <p>(b) Because of zwitterion formation</p> <p>(c) Because they are easily excreted in urine</p> <p>(d) Because of the hydrogen bond formation between specific base pair<br/>i.e. A=T and C≡G</p> <p>(e) n – hexane is formed</p> <p>(f) A linkage joining two monosaccharides through oxygen</p> <p>(g) Enzymes are biocatalysts that increases the rate of metabolism.</p>                  | <b>1x5=5</b>                                                  |